Analysis of the forces acting from the side of the magneto-abrasive tool on parts being machined during magneto-abrasive machining in conditions of the annular bath with large working gaps

Victor Maiboroda, Dmytro Dzhulii, Kostiantyn Zastavskyi
{"title":"Analysis of the forces acting from the side of the magneto-abrasive tool on parts being machined during magneto-abrasive machining in conditions of the annular bath with large working gaps","authors":"Victor Maiboroda, Dmytro Dzhulii, Kostiantyn Zastavskyi","doi":"10.20535/2521-1943.2023.7.1.271548","DOIUrl":null,"url":null,"abstract":"Background. For effective magneto-abrasive machining (MAM) of complex-shaped parts, comprehensive information is needed on the processes that occur when the magneto-abrasive tool (MAT) contacts with the surfaces being machined. Effective magneto-abrasive machining occurs in the presence of sufficient values of the normal and tangential components of the interaction forces between the MAT and the machined surfaces and the powder mixing during machining. Previously carried out analytical studies of dynamic parameters did not take into account the real conditions of the interaction of grains and their groups with machined surfaces. Objective. Complex analysis of the processes that occur during magneto-abrasive machining of parts made from different types of materials, based on the results of the study of the friction forces between the magneto-abrasive tool and the surface being machined and the drag forces during the movement of parts in the working zone of the machine. Methods. To achieve the set goal, the forces acting on the samples during their magneto-abrasive machining were measured with subsequent analytical analysis. Results. The complex analysis of the processes occurring during MAM in conditions of the annular working zone with large working gaps of parts made of various materials was carried out based on the results of the study of the friction and drag forces that occur when the part moves relative to the magneto-abrasive tool. Conclusions. It has been determined that when machining non-magnetic samples at the constant value of the magnetic field in the working zone, the specific drag forces are practically independent of the shape of the used powder. According to the analytical representation of the friction and drag forces, their ratio between their specific values was calculated. By the nature of the change in this ratio, it was found that it decreases with an increase in the velocity of samples movement along the working zone, and with an increase in the angular velocity of rotation of the samples around its axis, this value increases in the studied velocity range. It has been determined that at the velocity of movement along the working zone of 2.2 m/s, there is a slight increase in the ratio between the specific forces of friction and drag, which is associated with the action of ponderomotive forces that appear near the surface of the machined parts and lead to an increase in local magnetic forces in these zones.","PeriodicalId":32423,"journal":{"name":"Mechanics and Advanced Technologies","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Advanced Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/2521-1943.2023.7.1.271548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background. For effective magneto-abrasive machining (MAM) of complex-shaped parts, comprehensive information is needed on the processes that occur when the magneto-abrasive tool (MAT) contacts with the surfaces being machined. Effective magneto-abrasive machining occurs in the presence of sufficient values of the normal and tangential components of the interaction forces between the MAT and the machined surfaces and the powder mixing during machining. Previously carried out analytical studies of dynamic parameters did not take into account the real conditions of the interaction of grains and their groups with machined surfaces. Objective. Complex analysis of the processes that occur during magneto-abrasive machining of parts made from different types of materials, based on the results of the study of the friction forces between the magneto-abrasive tool and the surface being machined and the drag forces during the movement of parts in the working zone of the machine. Methods. To achieve the set goal, the forces acting on the samples during their magneto-abrasive machining were measured with subsequent analytical analysis. Results. The complex analysis of the processes occurring during MAM in conditions of the annular working zone with large working gaps of parts made of various materials was carried out based on the results of the study of the friction and drag forces that occur when the part moves relative to the magneto-abrasive tool. Conclusions. It has been determined that when machining non-magnetic samples at the constant value of the magnetic field in the working zone, the specific drag forces are practically independent of the shape of the used powder. According to the analytical representation of the friction and drag forces, their ratio between their specific values was calculated. By the nature of the change in this ratio, it was found that it decreases with an increase in the velocity of samples movement along the working zone, and with an increase in the angular velocity of rotation of the samples around its axis, this value increases in the studied velocity range. It has been determined that at the velocity of movement along the working zone of 2.2 m/s, there is a slight increase in the ratio between the specific forces of friction and drag, which is associated with the action of ponderomotive forces that appear near the surface of the machined parts and lead to an increase in local magnetic forces in these zones.
大工作间隙环槽磁磨料加工过程中,磁磨料刀具侧面对被加工零件的作用力分析
背景。为了对复杂形状零件进行有效的磁磨料加工(MAM),需要对磁磨料刀具(MAT)与被加工表面接触时发生的过程进行全面的信息处理。有效的磁磨料加工发生在加工过程中MAT与被加工表面之间的相互作用力的法向和切向分量和粉末混合的足够值的存在下。以往进行的动态参数分析研究没有考虑到晶粒及其群与加工表面相互作用的实际情况。目标。基于磁磨具与被加工表面之间的摩擦力和工件在机床工作区域内运动时的阻力的研究结果,对由不同类型材料制成的零件在磁磨具加工过程中发生的过程进行了复杂的分析。方法。为了达到设定的目标,测量了磁磨料加工过程中作用在样品上的力,并进行了后续的分析分析。结果。在研究不同材料零件相对于磁磨具运动时产生的摩擦力和阻力的基础上,对不同材料零件在具有较大工作间隙的环形工作区内的加工过程进行了复杂的分析。结论。已经确定,当在工作区域磁场恒定值下加工非磁性样品时,比阻力实际上与所用粉末的形状无关。根据摩擦力和阻力的解析表达式,计算了它们的比值之比。由该比值的变化性质可知,在研究的速度范围内,该比值随试样沿工作区移动速度的增加而减小,随试样绕其轴旋转角速度的增加而增大。已经确定,沿工作区的运动速度为2.2 m/s时,摩擦力和阻力的比略有增加,这与出现在加工零件表面附近的有源力的作用有关,并导致这些区域的局部磁力增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信