On $NH$-embedded and $SS$-quasinormal subgroups of finite groups

IF 0.5 Q3 MATHEMATICS
Weicheng ZHENG, Liang CUI, Wei MENG, Jiakuan LU
{"title":"On $NH$-embedded and $SS$-quasinormal subgroups of finite groups","authors":"Weicheng ZHENG, Liang CUI, Wei MENG, Jiakuan LU","doi":"10.24330/ieja.1299719","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite group. A subgroup $H$ is called $S$-semipermutable in $G$ if $HG_p$ = $G_pH$ for any $G_p\\in Syl_p(G)$ with $(|H|, p) = 1$, where $p$ is a prime number divisible $|G|$. Furthermore, $H$ is said to be $NH$-embedded in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT$ is a Hall subgroup of $G$ and $H \\cap T \\leq H_{\\overline{s}G}$, where $H_{\\overline{s}G}$ is the largest $S$-semipermutable subgroup of $G$ contained in $H$, and $H$ is said to be $SS$-quasinormal in $G$ provided there is a supplement $B$ of $H$ to $G$ such that $H$ permutes with every Sylow subgroup of $B$. In this paper, we obtain some criteria for $p$-nilpotency and Supersolvability of a finite group and extend some known results concerning $NH$-embedded and $SS$-quasinormal subgroups.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"134 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1299719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a finite group. A subgroup $H$ is called $S$-semipermutable in $G$ if $HG_p$ = $G_pH$ for any $G_p\in Syl_p(G)$ with $(|H|, p) = 1$, where $p$ is a prime number divisible $|G|$. Furthermore, $H$ is said to be $NH$-embedded in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT$ is a Hall subgroup of $G$ and $H \cap T \leq H_{\overline{s}G}$, where $H_{\overline{s}G}$ is the largest $S$-semipermutable subgroup of $G$ contained in $H$, and $H$ is said to be $SS$-quasinormal in $G$ provided there is a supplement $B$ of $H$ to $G$ such that $H$ permutes with every Sylow subgroup of $B$. In this paper, we obtain some criteria for $p$-nilpotency and Supersolvability of a finite group and extend some known results concerning $NH$-embedded and $SS$-quasinormal subgroups.
有限群的$NH$-嵌入和$SS$-拟正规子群
让 $G$ 做一个有限的群体。子组 $H$ 叫做 $S$-半可变的 $G$ 如果 $HG_p$ = $G_pH$ 对于任何 $G_p\in Syl_p(G)$ 有 $(|H|, p) = 1$,其中 $p$ 质数能被整除吗 $|G|$. 此外, $H$ 据说是 $NH$-嵌入 $G$ 如果存在正常子组 $T$ 的 $G$ 这样 $HT$ 霍尔的子群是什么 $G$ 和 $H \cap T \leq H_{\overline{s}G}$,其中 $H_{\overline{s}G}$ 是最大的 $S$的半置换子群 $G$ 包含在 $H$,和 $H$ 据说是 $SS$-拟正态 $G$ 只要有补充 $B$ 的 $H$ 到 $G$ 这样 $H$ 的每个Sylow子群置换 $B$. 在本文中,我们得到了 $p$有限群的-幂零性和超可解性,推广了有关的一些已知结果 $NH$-嵌入式和 $SS$-拟正规子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信