{"title":"Signal and Telegram Security Messenger Digital Forensic Analysis study in Android Environment","authors":"Jae-Min Kwon, Won-Hyung Park, Youn-sung Choi","doi":"10.33778/kcsa.2023.23.3.013","DOIUrl":null,"url":null,"abstract":"본 연구는 안드로이드 환경에서 널리 사용되는 두 개의 보안 메신저인 Signal과 Telegram에 대한 디지털 포렌식 분석을 진행하였다. 현재 모바일 메신저가 일상생활의 중요한 역할을 하는 만큼, 이들 앱 내부의 데이터 관리와 보안성은 매우 중요 한 이슈가 됐다. Signal과 Telegram은 그중에서도 사용자들 사이에서 높은 신뢰성을 받고 있는 보안 메신저로, 암호화 기술을 바탕으로 사용자들의 개인 정보를 안전하게 보호한다. 하지만 이러한 암호화된 데이터를 어떻게 분석할 수 있을지에 대해서는 아직까지 많은 연구가 필요하다. 본 연구에서는 이러한 문제점을 해결하기 위해 Signal과 Telegram의 메시지 암호화와 안드 로이드 디바이스 내 데이터베이스 구조 및 암호화 방식에 대하여 깊이 있는 분석을 진행하였다. Signal의 경우, 복잡한 알고리 즘으로 인해 외부에서 접근하기 어려운 암호화된 메시지를 성공적으로 복호화 하여 내용을 확인할 수 있었다. 또한 두 메신저 앱의 데이터베이스 구조를 세밀하게 분석하여 해당 정보를 수시로 활용할 수 있는 폴더 구조 및 파일 형태로 정리하는 작업 도 진행했다. 이렇게 분석한 정보를 바탕으로 보다 발전된 기술과 방법론을 적용함으로써, 앞으로 더욱 정확하고 세밀한 디지 털 포렌식 분석이 가능할 것으로 기대된다. 이 연구가 Signal과 Telegram 같은 보안 메신저에 대한 이해를 높이는 데 도움을 주며, 이로 인해 개인 정보 보호와 범죄 예방 등 여러 측면에서의 활용 가능성이 열릴 것으로 예상된다.","PeriodicalId":486223,"journal":{"name":"정보보증논문지","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"정보보증논문지","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33778/kcsa.2023.23.3.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
본 연구는 안드로이드 환경에서 널리 사용되는 두 개의 보안 메신저인 Signal과 Telegram에 대한 디지털 포렌식 분석을 진행하였다. 현재 모바일 메신저가 일상생활의 중요한 역할을 하는 만큼, 이들 앱 내부의 데이터 관리와 보안성은 매우 중요 한 이슈가 됐다. Signal과 Telegram은 그중에서도 사용자들 사이에서 높은 신뢰성을 받고 있는 보안 메신저로, 암호화 기술을 바탕으로 사용자들의 개인 정보를 안전하게 보호한다. 하지만 이러한 암호화된 데이터를 어떻게 분석할 수 있을지에 대해서는 아직까지 많은 연구가 필요하다. 본 연구에서는 이러한 문제점을 해결하기 위해 Signal과 Telegram의 메시지 암호화와 안드 로이드 디바이스 내 데이터베이스 구조 및 암호화 방식에 대하여 깊이 있는 분석을 진행하였다. Signal의 경우, 복잡한 알고리 즘으로 인해 외부에서 접근하기 어려운 암호화된 메시지를 성공적으로 복호화 하여 내용을 확인할 수 있었다. 또한 두 메신저 앱의 데이터베이스 구조를 세밀하게 분석하여 해당 정보를 수시로 활용할 수 있는 폴더 구조 및 파일 형태로 정리하는 작업 도 진행했다. 이렇게 분석한 정보를 바탕으로 보다 발전된 기술과 방법론을 적용함으로써, 앞으로 더욱 정확하고 세밀한 디지 털 포렌식 분석이 가능할 것으로 기대된다. 이 연구가 Signal과 Telegram 같은 보안 메신저에 대한 이해를 높이는 데 도움을 주며, 이로 인해 개인 정보 보호와 범죄 예방 등 여러 측면에서의 활용 가능성이 열릴 것으로 예상된다.