Regolinda Maneno, Budiman Baso, Patricia G. Manek, Kristoforus Fallo
{"title":"Deteksi Tingkat Kematangan Buah Pinang Menggunakan Metode Support Vector Machine Berdasarkan Warna Dan Tekstur","authors":"Regolinda Maneno, Budiman Baso, Patricia G. Manek, Kristoforus Fallo","doi":"10.32938/jitu.v3i2.5323","DOIUrl":null,"url":null,"abstract":"Penelitian ini bertujuan untuk membangun sistem deteksi tingkat kematangan buah pinang dengan memanfaatkan pengolahan citra digital yang melibatkan fitur-fitur tekstur dan warna. Tahapan awal dalam penelitian adalah melakukan Pre-processing data citra agar dapat disiapkan untuk proses selanjutnya, yaitu ekstraksi fitur. Proses ekstraksi fitur tekstur dilakukan dengan menggunakan Gray Level Co-Occurrence Matrix (GLCM) untuk mengambil nilai Correlation, sementara ekstraksi fitur warna dilakukan dengan metode Color Moments dengan fokus pada nilai Mean. Klasifikasi dengan Support Vector Machine (SVM) dilakukan berdasarkan fitur yang telah diekstraksi sebelumnya, adapun parameter yang diujicobakan adalah jenis kernel yaitu Linear, Gaussian, Polynomial pada algoritma SVM. Dari hasil yang diperoleh menunjukan semua matrik performa dari kernel Polynomial mengungguli kernel yang lain dengan hasil Accuracy yang diperoleh sebesar 90,90%, Precision 90,90%, Recall 92,30% dan F1-Score mecapai 91,60% pada proses deteksi tingkat kematangan buah pinang.","PeriodicalId":51872,"journal":{"name":"International Journal of Information and Learning Technology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Learning Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32938/jitu.v3i2.5323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Penelitian ini bertujuan untuk membangun sistem deteksi tingkat kematangan buah pinang dengan memanfaatkan pengolahan citra digital yang melibatkan fitur-fitur tekstur dan warna. Tahapan awal dalam penelitian adalah melakukan Pre-processing data citra agar dapat disiapkan untuk proses selanjutnya, yaitu ekstraksi fitur. Proses ekstraksi fitur tekstur dilakukan dengan menggunakan Gray Level Co-Occurrence Matrix (GLCM) untuk mengambil nilai Correlation, sementara ekstraksi fitur warna dilakukan dengan metode Color Moments dengan fokus pada nilai Mean. Klasifikasi dengan Support Vector Machine (SVM) dilakukan berdasarkan fitur yang telah diekstraksi sebelumnya, adapun parameter yang diujicobakan adalah jenis kernel yaitu Linear, Gaussian, Polynomial pada algoritma SVM. Dari hasil yang diperoleh menunjukan semua matrik performa dari kernel Polynomial mengungguli kernel yang lain dengan hasil Accuracy yang diperoleh sebesar 90,90%, Precision 90,90%, Recall 92,30% dan F1-Score mecapai 91,60% pada proses deteksi tingkat kematangan buah pinang.
期刊介绍:
International Journal of Information and Learning Technology (IJILT) provides a forum for the sharing of the latest theories, applications, and services related to planning, developing, managing, using, and evaluating information technologies in administrative, academic, and library computing, as well as other educational technologies. Submissions can include research: -Illustrating and critiquing educational technologies -New uses of technology in education -Issue-or results-focused case studies detailing examples of technology applications in higher education -In-depth analyses of the latest theories, applications and services in the field The journal provides wide-ranging and independent coverage of the management, use and integration of information resources and learning technologies.