S. Balaji, T. Arunprasath, M. Pallikonda Rajasekaran, G. Vishnuvarthanan, K. Sindhuja
{"title":"Computer-aided diagnostic system for breast cancer detection based on optimized segmentation scheme and supervised algorithm","authors":"S. Balaji, T. Arunprasath, M. Pallikonda Rajasekaran, G. Vishnuvarthanan, K. Sindhuja","doi":"10.1080/00051144.2023.2244307","DOIUrl":null,"url":null,"abstract":"Breast cancer is a serious threat to the womankind and it leads the susceptible kinds of cancer for women. The mortality rates due to breast cancer increases every single year and the World Health Organization (WHO) aims to reduce the occurrence of breast cancer by at least 2.5% per year. The occurrence of breast cancer can be minimized only when periodical screening is carried out. Mammography is one of the effective screening procedure, which can effectively locate earlier signs of breast cancer. As an aid, this work aims to present a system for the breast cancer detection and classification. This work is segregated into four phases and all these phases aim to enhance the classification performance. The efficiency of the proposed work is evaluated against the state-of-the-art approaches and the proposed contribution to the medical science. The computer-aided diagnostic system (CADS) proves 98.2% accuracy, with minimal false positive and false negative rates in a reasonable period of time.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"22 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2244307","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a serious threat to the womankind and it leads the susceptible kinds of cancer for women. The mortality rates due to breast cancer increases every single year and the World Health Organization (WHO) aims to reduce the occurrence of breast cancer by at least 2.5% per year. The occurrence of breast cancer can be minimized only when periodical screening is carried out. Mammography is one of the effective screening procedure, which can effectively locate earlier signs of breast cancer. As an aid, this work aims to present a system for the breast cancer detection and classification. This work is segregated into four phases and all these phases aim to enhance the classification performance. The efficiency of the proposed work is evaluated against the state-of-the-art approaches and the proposed contribution to the medical science. The computer-aided diagnostic system (CADS) proves 98.2% accuracy, with minimal false positive and false negative rates in a reasonable period of time.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.