Diffusion of tangential tensor fields: numerical issues and influence of geometric properties

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
E. Bachini, P. Brandner, T. Jankuhn, M. Nestler, S. Praetorius, A. Reusken, A. Voigt
{"title":"Diffusion of tangential tensor fields: numerical issues and influence of geometric properties","authors":"E. Bachini, P. Brandner, T. Jankuhn, M. Nestler, S. Praetorius, A. Reusken, A. Voigt","doi":"10.1515/jnma-2022-0088","DOIUrl":null,"url":null,"abstract":"Abstract We study the diffusion of tangential tensor-valued data on curved surfaces. For this purpose, several finite-element-based numerical methods are collected and used to solve a tangential surface n -tensor heat flow problem. These methods differ with respect to the surface representation used, the geometric information required, and the treatment of the tangentiality condition. We emphasize the importance of geometric properties and their increasing influence as the tensorial degree changes from n = 0 to n ≥ 1. A specific example is presented that illustrates how curvature drastically affects the behavior of the solution.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jnma-2022-0088","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract We study the diffusion of tangential tensor-valued data on curved surfaces. For this purpose, several finite-element-based numerical methods are collected and used to solve a tangential surface n -tensor heat flow problem. These methods differ with respect to the surface representation used, the geometric information required, and the treatment of the tangentiality condition. We emphasize the importance of geometric properties and their increasing influence as the tensorial degree changes from n = 0 to n ≥ 1. A specific example is presented that illustrates how curvature drastically affects the behavior of the solution.
切向张量场的扩散:数值问题和几何性质的影响
摘要研究了切向张量值数据在曲面上的扩散。为此,收集了几种基于有限元的数值方法,并将其用于求解切向表面n张量热流问题。这些方法在使用的表面表示、所需的几何信息和切线条件的处理方面有所不同。我们强调几何性质的重要性和它们随着张拉度从n = 0到n≥1的变化而增加的影响。给出了一个具体的例子,说明了曲率如何极大地影响解的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信