{"title":"Stage‐parallel preconditioners for implicit Runge–Kutta methods of arbitrarily high order, linear problems","authors":"Owe Axelsson, Ivo Dravins, Maya Neytcheva","doi":"10.1002/nla.2532","DOIUrl":null,"url":null,"abstract":"Abstract Fully implicit Runge–Kutta methods offer the possibility to use high order accurate time discretization to match space discretization accuracy, an issue of significant importance for many large scale problems of current interest, where we may have fine space resolution with many millions of spatial degrees of freedom and long time intervals. In this work, we consider strongly A‐stable implicit Runge–Kutta methods of arbitrary order of accuracy, based on Radau quadratures. For the arising large algebraic systems we introduce efficient preconditioners, that (1) use only real arithmetic, (2) demonstrate robustness with respect to problem and discretization parameters, and (3) allow for fully stage‐parallel solution. The preconditioners are based on the observation that the lower‐triangular part of the coefficient matrices in the Butcher tableau has larger in magnitude values, compared to the corresponding strictly upper‐triangular part. We analyze the spectrum of the corresponding preconditioned systems and illustrate their performance with numerical experiments. Even though the observation has been made some time ago, its impact on constructing stage‐parallel preconditioners has not yet been done and its systematic study constitutes the novelty of this article.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nla.2532","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Fully implicit Runge–Kutta methods offer the possibility to use high order accurate time discretization to match space discretization accuracy, an issue of significant importance for many large scale problems of current interest, where we may have fine space resolution with many millions of spatial degrees of freedom and long time intervals. In this work, we consider strongly A‐stable implicit Runge–Kutta methods of arbitrary order of accuracy, based on Radau quadratures. For the arising large algebraic systems we introduce efficient preconditioners, that (1) use only real arithmetic, (2) demonstrate robustness with respect to problem and discretization parameters, and (3) allow for fully stage‐parallel solution. The preconditioners are based on the observation that the lower‐triangular part of the coefficient matrices in the Butcher tableau has larger in magnitude values, compared to the corresponding strictly upper‐triangular part. We analyze the spectrum of the corresponding preconditioned systems and illustrate their performance with numerical experiments. Even though the observation has been made some time ago, its impact on constructing stage‐parallel preconditioners has not yet been done and its systematic study constitutes the novelty of this article.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.