Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez
{"title":"Test of bivariate independence based on angular probability integral transform with emphasis on circular-circular and circular-linear data","authors":"Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez","doi":"10.1515/demo-2023-0103","DOIUrl":null,"url":null,"abstract":"Abstract The probability integral transform of a continuous random variable <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> X with distribution function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> </m:math> {F}_{X} is a uniformly distributed random variable <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>U</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> U={F}_{X}\\left(X) . We define the angular probability integral transform (APIT) as <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mi>U</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi>π</m:mi> <m:mi>U</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi>π</m:mi> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {\\theta }_{U}=2\\pi U=2\\pi {F}_{X}\\left(X) , which corresponds to a uniformly distributed angle on the unit circle. For circular (angular) random variables, the sum modulus 2 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>π</m:mi> </m:math> \\pi of absolutely continuous independent circular uniform random variables is a circular uniform random variable, that is, the circular uniform distribution is closed under summation modulus 2 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>π</m:mi> </m:math> \\pi , and it is a stable continuous distribution on the unit circle. If we consider the sum (difference) of the APITs of two random variables, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:math> {X}_{1} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:math> {X}_{2} , and test for the circular uniformity of their sum (difference) modulus 2 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>π</m:mi> </m:math> \\pi , this is equivalent to test of independence of the original variables. In this study, we used a flexible family of nonnegative trigonometric sums (NNTS) circular distributions, which include the uniform circular distribution as a member of the family, to evaluate the power of the proposed independence test by generating samples from NNTS alternative distributions that could be at a closer proximity with respect to the circular uniform null distribution.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"25 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2023-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The probability integral transform of a continuous random variable X X with distribution function FX {F}_{X} is a uniformly distributed random variable U=FX(X) U={F}_{X}\left(X) . We define the angular probability integral transform (APIT) as θU=2πU=2πFX(X) {\theta }_{U}=2\pi U=2\pi {F}_{X}\left(X) , which corresponds to a uniformly distributed angle on the unit circle. For circular (angular) random variables, the sum modulus 2 π \pi of absolutely continuous independent circular uniform random variables is a circular uniform random variable, that is, the circular uniform distribution is closed under summation modulus 2 π \pi , and it is a stable continuous distribution on the unit circle. If we consider the sum (difference) of the APITs of two random variables, X1 {X}_{1} and X2 {X}_{2} , and test for the circular uniformity of their sum (difference) modulus 2 π \pi , this is equivalent to test of independence of the original variables. In this study, we used a flexible family of nonnegative trigonometric sums (NNTS) circular distributions, which include the uniform circular distribution as a member of the family, to evaluate the power of the proposed independence test by generating samples from NNTS alternative distributions that could be at a closer proximity with respect to the circular uniform null distribution.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations