Mesquite-associated soil and phyllosphere microbial communities differ across land-use types in drylands

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Sydney Cleavenger, Yongjian Chen, Albert Barberán
{"title":"Mesquite-associated soil and phyllosphere microbial communities differ across land-use types in drylands","authors":"Sydney Cleavenger, Yongjian Chen, Albert Barberán","doi":"10.1525/elementa.2023.00026","DOIUrl":null,"url":null,"abstract":"Plant-associated microbiomes play prominent roles in maintaining plant health and productivity. Here, we characterized the soil and phyllosphere microbiomes associated with mesquite trees in grazing and urban areas compared to natural areas in the arid Southwestern United States. Our results showed that grazing areas were associated with higher phyllosphere fungal richness, while urban areas had higher phyllosphere richness for both fungi and bacteria/archaea, and additionally, urban soils had lower fungal richness. Specifically, grazing areas were characterized by larger proportions of nitrogen-fixing bacteria in the soil and fungal plant pathogens in the phyllosphere, while urban areas presented higher proportions of fungal plant pathogens in both the soil and phyllosphere as well as nitrifying and denitrifying bacteria in the phyllosphere, but a lower proportion of cellulolytic bacteria in the soil. Furthermore, in urban areas, more phyllosphere microorganisms were sourced from the soil. Collectively, these results suggest that plant-associated microbiomes change significantly across land-use types, and these patterns are different between aboveground and belowground parts of plants, as well as between bacteria/archaea and fungi. These changes in plant-associated microbiomes across land-use types might have important implications for nutrient cycling, plant health, and ecosystem restoration.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1525/elementa.2023.00026","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-associated microbiomes play prominent roles in maintaining plant health and productivity. Here, we characterized the soil and phyllosphere microbiomes associated with mesquite trees in grazing and urban areas compared to natural areas in the arid Southwestern United States. Our results showed that grazing areas were associated with higher phyllosphere fungal richness, while urban areas had higher phyllosphere richness for both fungi and bacteria/archaea, and additionally, urban soils had lower fungal richness. Specifically, grazing areas were characterized by larger proportions of nitrogen-fixing bacteria in the soil and fungal plant pathogens in the phyllosphere, while urban areas presented higher proportions of fungal plant pathogens in both the soil and phyllosphere as well as nitrifying and denitrifying bacteria in the phyllosphere, but a lower proportion of cellulolytic bacteria in the soil. Furthermore, in urban areas, more phyllosphere microorganisms were sourced from the soil. Collectively, these results suggest that plant-associated microbiomes change significantly across land-use types, and these patterns are different between aboveground and belowground parts of plants, as well as between bacteria/archaea and fungi. These changes in plant-associated microbiomes across land-use types might have important implications for nutrient cycling, plant health, and ecosystem restoration.
干旱地不同土地利用类型的mesquate相关土壤和层圈微生物群落存在差异
植物相关微生物组在维持植物健康和生产力方面发挥着重要作用。在这里,我们对放牧和城市地区与美国西南部干旱自然地区的豆科植物相关的土壤和层际微生物群进行了表征。结果表明:放牧区土壤层际真菌丰富度较高,城市土壤层际真菌丰富度和细菌/古细菌丰富度较高,城市土壤层际真菌丰富度较低;其中,牧区土壤固氮细菌和根层真菌植物病原体比例较高,城市土壤和根层真菌植物病原体比例较高,根层硝化和反硝化细菌比例较高,而纤维素分解细菌比例较低。此外,在城市地区,更多的层圈微生物来源于土壤。总的来说,这些结果表明,植物相关微生物组在不同的土地利用类型中发生了显著变化,这些模式在植物的地上和地下部分以及细菌/古细菌和真菌之间都是不同的。不同土地利用类型植物相关微生物组的这些变化可能对养分循环、植物健康和生态系统恢复具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Elementa-Science of the Anthropocene
Elementa-Science of the Anthropocene Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.90
自引率
5.10%
发文量
65
审稿时长
16 weeks
期刊介绍: A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信