The different electroplastic effects of cutting directions during the turning process of Ti-6Al-4V titanium alloy

IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huigang Yang, Zhenyu Wang
{"title":"The different electroplastic effects of cutting directions during the turning process of Ti-6Al-4V titanium alloy","authors":"Huigang Yang, Zhenyu Wang","doi":"10.1504/ijmpt.2023.133047","DOIUrl":null,"url":null,"abstract":"Electroplastic assisted process is a new machining technology, which can reduce the tensile strength and spring back of materials and increase the formability and quality of the workpiece. Currently, this technology has been successfully applied in electroplastic-assisted rolling, drawing, and turning. However, most research in electroplastic-assisted turning is focused on reducing the cutting force and energy consumption and improving surface quality. The differences in cutting forces reduce caused by electroplastic in different directions have not been reported. In this paper, we compare the decrement of cutting forces in different directions during the electroplastic-assisted turning of titanium alloy (TC4). It is found that there is no obvious force reduction in the tangential direction compared to that in the feed direction. The possible explanation is that the electroplastic effect does not work in reducing compressive stress. This was validated by electroplastic-assisted cut-off turning and electroplastic-assisted compressing experiments. This work provides a deep insight into understanding the electroplastic mechanism and offers a guide for the application of electroplastic-assisted forming.","PeriodicalId":14167,"journal":{"name":"International Journal of Materials & Product Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials & Product Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmpt.2023.133047","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electroplastic assisted process is a new machining technology, which can reduce the tensile strength and spring back of materials and increase the formability and quality of the workpiece. Currently, this technology has been successfully applied in electroplastic-assisted rolling, drawing, and turning. However, most research in electroplastic-assisted turning is focused on reducing the cutting force and energy consumption and improving surface quality. The differences in cutting forces reduce caused by electroplastic in different directions have not been reported. In this paper, we compare the decrement of cutting forces in different directions during the electroplastic-assisted turning of titanium alloy (TC4). It is found that there is no obvious force reduction in the tangential direction compared to that in the feed direction. The possible explanation is that the electroplastic effect does not work in reducing compressive stress. This was validated by electroplastic-assisted cut-off turning and electroplastic-assisted compressing experiments. This work provides a deep insight into understanding the electroplastic mechanism and offers a guide for the application of electroplastic-assisted forming.
Ti-6Al-4V钛合金车削过程中切削方向的不同电塑性效应
电塑性辅助加工是一种新的加工技术,它可以降低材料的抗拉强度和回弹,提高工件的成形性和质量。目前,该技术已成功应用于电塑辅助轧制、拉伸和车削。然而,电塑辅助车削的研究大多集中在减小切削力和能量消耗以及提高表面质量上。不同方向的电塑性引起的切削力降低差异尚未见报道。本文比较了钛合金(TC4)电塑性辅助车削过程中不同方向切削力的减量。与进给方向相比,切向力没有明显的减小。可能的解释是,电塑性效应在降低压应力方面不起作用。通过电塑性辅助切断车削和电塑性辅助压缩实验验证了这一点。这项工作为了解电塑性机理提供了深入的见解,并为电塑性辅助成形的应用提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Materials & Product Technology
International Journal of Materials & Product Technology 工程技术-材料科学:综合
CiteScore
0.80
自引率
0.00%
发文量
61
审稿时长
8 months
期刊介绍: The IJMPT is a refereed and authoritative publication which provides a forum for the exchange of information and ideas between materials academics and engineers working in university research departments and research institutes, and manufacturing, marketing and process managers, designers, technologists and research and development engineers working in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信