Seismic damage assessment of elevated RC water tank considering fluid-soil-structure interaction and foundation uplifting

IF 0.7 Q4 ENGINEERING, CIVIL
Fahem Bouchala, Abdelghani Seghir
{"title":"Seismic damage assessment of elevated RC water tank considering fluid-soil-structure interaction and foundation uplifting","authors":"Fahem Bouchala, Abdelghani Seghir","doi":"10.1504/ijstructe.2023.134341","DOIUrl":null,"url":null,"abstract":"The seismic damage of an elevated reinforced concrete water tank is evaluated in the present work, considering water effect and soil structure interaction with foundation uplifting. The effect of the soil-structure interaction is accounted for by using springs with gap elements to allow the foundation uplifting. The stored water inertia is reproduced by an impulsive and convective masses. The supporting framed structure is modelled by hinged beam elements, and the fibre element model based on the axial load - biaxial moment interaction (PMM) hinge section is selected to define the basic force-deformation relationship for each material in the hinge. Model validation and modal analyses of the intact tank are first presented. Then, several incremental dynamic analyses are conducted to evaluate the seismic capacity and degraded modal characteristics of the tank after damage. Finally, a global seismic damage index is proposed and evaluated to assess the soil structure and the foundation uplifting effects.","PeriodicalId":38785,"journal":{"name":"International Journal of Structural Engineering","volume":"144 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijstructe.2023.134341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The seismic damage of an elevated reinforced concrete water tank is evaluated in the present work, considering water effect and soil structure interaction with foundation uplifting. The effect of the soil-structure interaction is accounted for by using springs with gap elements to allow the foundation uplifting. The stored water inertia is reproduced by an impulsive and convective masses. The supporting framed structure is modelled by hinged beam elements, and the fibre element model based on the axial load - biaxial moment interaction (PMM) hinge section is selected to define the basic force-deformation relationship for each material in the hinge. Model validation and modal analyses of the intact tank are first presented. Then, several incremental dynamic analyses are conducted to evaluate the seismic capacity and degraded modal characteristics of the tank after damage. Finally, a global seismic damage index is proposed and evaluated to assess the soil structure and the foundation uplifting effects.
考虑流-土-结构相互作用和基础抬升的高架RC水箱震害评估
考虑水效应、土结构相互作用和基础抬升,对某高架钢筋混凝土水箱进行了地震损伤评价。采用带间隙单元的弹簧对基础进行上提,考虑了土-结构相互作用的影响。储存的水惯量由脉冲和对流质量再现。采用铰接梁单元对支撑框架结构进行建模,选择基于轴向载荷-双轴弯矩相互作用(PMM)铰截面的纤维单元模型,定义铰中各材料的基本力-变形关系。首先对完整储罐进行了模型验证和模态分析。在此基础上,进行了增量动力分析,评价了罐体损伤后的抗震能力和退化模态特征。最后,提出并评价了全球震害指数,用以评价地基结构和基础的隆升效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Structural Engineering
International Journal of Structural Engineering Engineering-Civil and Structural Engineering
CiteScore
2.40
自引率
23.10%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信