Model-based deep learning approaches to the Helsinki Tomography Challenge 2022

Clemens Arndt, Alexander Denker, Sören Dittmer, Johannes Leuschner, Judith Nickel, Maximilian Schmidt
{"title":"Model-based deep learning approaches to the Helsinki Tomography Challenge 2022","authors":"Clemens Arndt, Alexander Denker, Sören Dittmer, Johannes Leuschner, Judith Nickel, Maximilian Schmidt","doi":"10.3934/ammc.2023007","DOIUrl":null,"url":null,"abstract":"The Finnish Inverse Problems Society organized the Helsinki Tomography Challenge (HTC) in 2022 to reconstruct an image with limited-angle measurements. We participated in this challenge and developed two methods: an Edge Inpainting method and a Learned Primal-Dual (LPD) network. The Edge Inpainting method involves multiple stages, including classical reconstruction using Perona-Malik, detection of visible edges, inpainting invisible edges using a U-Net, and final segmentation using a U-Net. The LPD approach adapts the classical LPD by using large U-Nets in the primal update and replacing the adjoint with the filtered back projection (FBP). Since the challenge only provided five samples, we generated synthetic data to train the networks. The Edge Inpainting Method performed well for viewing ranges above 70 degrees, while the LPD approach performed well across all viewing ranges and ranked second overall in the challenge.","PeriodicalId":493031,"journal":{"name":"Applied Mathematics for Modern Challenges","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics for Modern Challenges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ammc.2023007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Finnish Inverse Problems Society organized the Helsinki Tomography Challenge (HTC) in 2022 to reconstruct an image with limited-angle measurements. We participated in this challenge and developed two methods: an Edge Inpainting method and a Learned Primal-Dual (LPD) network. The Edge Inpainting method involves multiple stages, including classical reconstruction using Perona-Malik, detection of visible edges, inpainting invisible edges using a U-Net, and final segmentation using a U-Net. The LPD approach adapts the classical LPD by using large U-Nets in the primal update and replacing the adjoint with the filtered back projection (FBP). Since the challenge only provided five samples, we generated synthetic data to train the networks. The Edge Inpainting Method performed well for viewing ranges above 70 degrees, while the LPD approach performed well across all viewing ranges and ranked second overall in the challenge.
2022年赫尔辛基断层扫描挑战赛的基于模型的深度学习方法
芬兰反问题协会于2022年组织了赫尔辛基断层扫描挑战赛(HTC),以重建有限角度测量的图像。我们参与了这一挑战,并开发了两种方法:边缘绘制方法和学习原始对偶(LPD)网络。该方法涉及多个阶段,包括使用Perona-Malik进行经典重建,检测可见边缘,使用U-Net对不可见边缘进行涂漆,最后使用U-Net进行分割。LPD方法对经典LPD方法进行了改进,在原始更新中使用大u - net,并用滤波后的反投影(FBP)代替伴随算子。由于挑战只提供了五个样本,我们生成了合成数据来训练网络。边缘绘制方法在70度以上的视角范围内表现良好,而LPD方法在所有视角范围内表现良好,在挑战中排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信