Surrogate Modeling and Application of Half-Wave Rectified Brushless Synchronous Motor for Model-Based Design

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Takahiro Koga, Takashi Abe, Yoshitsugu Otomo, Masaki Yamamoto, Marius Rosu
{"title":"Surrogate Modeling and Application of Half-Wave Rectified Brushless Synchronous Motor for Model-Based Design","authors":"Takahiro Koga, Takashi Abe, Yoshitsugu Otomo, Masaki Yamamoto, Marius Rosu","doi":"10.1541/ieejjia.23005913","DOIUrl":null,"url":null,"abstract":"This paper presents a surrogate modeling technology and the application using the response surface methodology (RSM) for a half-wave rectified brushless synchronous motor (HRSM) for model-based design. HRSM adopts a field winding that is single-phase short-circuited through a diode, instead of a brush at the rotor. This brushless excitation facilitates the maintenance of the motor and variable field flux operation. However, creating a high accuracy motor model for model-based design using HRSM considering field current characteristics with the effects of the diode is difficult, and the problem of an unrealistic complex calculation for applications such as drive cycle simulations exists. To overcome these challenges, we propose a surrogate modeling technique for HRSM using RSM and finite element analysis. The objective of this study is achieve the fast and accurate simulation to predict the wide range and long-time driving conditions of HRSM, which is difficult to validate experimentally.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"84 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.23005913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a surrogate modeling technology and the application using the response surface methodology (RSM) for a half-wave rectified brushless synchronous motor (HRSM) for model-based design. HRSM adopts a field winding that is single-phase short-circuited through a diode, instead of a brush at the rotor. This brushless excitation facilitates the maintenance of the motor and variable field flux operation. However, creating a high accuracy motor model for model-based design using HRSM considering field current characteristics with the effects of the diode is difficult, and the problem of an unrealistic complex calculation for applications such as drive cycle simulations exists. To overcome these challenges, we propose a surrogate modeling technique for HRSM using RSM and finite element analysis. The objective of this study is achieve the fast and accurate simulation to predict the wide range and long-time driving conditions of HRSM, which is difficult to validate experimentally.
基于模型设计的半波整流无刷同步电机代理建模及应用
本文提出了一种基于模型设计的半波整流无刷同步电机的替代建模技术及响应面方法的应用。HRSM采用磁场绕组,通过二极管进行单相短路,而不是在转子处使用电刷。这种无刷励磁便于维护电机和可变磁场磁通运行。然而,考虑到磁场电流特性和二极管的影响,利用HRSM建立基于模型设计的高精度电机模型是困难的,并且存在驱动循环模拟等应用中不现实的复杂计算问题。为了克服这些挑战,我们提出了一种利用RSM和有限元分析的HRSM代理建模技术。本研究的目的是实现快速准确的仿真,以预测HRSM的大范围和长时间驾驶条件,这在实验上很难得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEJ Journal of Industry Applications
IEEJ Journal of Industry Applications ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.80
自引率
17.60%
发文量
71
期刊介绍: IEEJ Journal of Industry Applications: Power Electronics - AC/AC Conversion and DC/DC Conversion, - Power Semiconductor Devices and their Application, - Inverters and Rectifiers, - Power Supply System and its Application, - Power Electronics Modeling, Simulation, Design and Control, - Renewable Electric Energy Conversion    Industrial System - Mechatronics and Robotics, - Industrial Instrumentation and Control, - Sensing, Actuation, Motion Control and Haptics, - Factory Automation and Production Facility Control, - Automobile Technology and ITS Technology, - Information Oriented Industrial System Electrical Machinery and Apparatus - Electric Machines Design, Modeling and Control, - Rotating Motor Drives and Linear Motor Drives, - Electric Vehicles and Hybrid Electric Vehicles, - Electric Railway and Traction Control, - Magnetic Levitation and Magnetic Bearing, - Static Apparatus and Superconductive Application Publishing Ethics of IEEJ Journal of Industry Applications:     Code of Ethics on IEEJ IEEJ Journal of Industry Applications is a peer-reviewed journal of IEEJ (the Institute of Electrical Engineers of Japan). The publication of IEEJ Journal of Industry Applications is an essential building article in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. IEEJ Journal of Industry Applications has "Peer-reviewed articles support." It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer and IEEJ (the Institute of Electrical Engineers of Japan).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信