{"title":"Nonlinearity parameter imaging in the frequency domain","authors":"Barbara Kaltenbacher, William Rundell","doi":"10.3934/ipi.2023037","DOIUrl":null,"url":null,"abstract":"Nonlinearity parameter tomography leads to the problem of identifying a coefficient in a nonlinear wave equation (such as the Westervelt equation) modeling ultrasound propagation. In this paper we transfer this into frequency domain, where the Westervelt equation gets replaced by a coupled system of Helmholtz equations with quadratic nonlinearities. For the case of the to-be-determined nonlinearity coefficient being a characteristic function of an unknown, not necessarily connected domain $ D $, we devise and test a reconstruction algorithm based on weighted point source approximations combined with Newton's method. In a more abstract setting, convergence of a regularised Newton type method for this inverse problem is proven by verifying a range invariance condition of the forward operator and establishing injectivity of its linearisation.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"23 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ipi.2023037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinearity parameter tomography leads to the problem of identifying a coefficient in a nonlinear wave equation (such as the Westervelt equation) modeling ultrasound propagation. In this paper we transfer this into frequency domain, where the Westervelt equation gets replaced by a coupled system of Helmholtz equations with quadratic nonlinearities. For the case of the to-be-determined nonlinearity coefficient being a characteristic function of an unknown, not necessarily connected domain $ D $, we devise and test a reconstruction algorithm based on weighted point source approximations combined with Newton's method. In a more abstract setting, convergence of a regularised Newton type method for this inverse problem is proven by verifying a range invariance condition of the forward operator and establishing injectivity of its linearisation.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.