A deep neural network for a hemiarray EIT system

Mason Manning, Nicholas Wharff, Shelby Horth, Jacob Roarty, Rosalind J. Sadleir, Malena I. Español
{"title":"A deep neural network for a hemiarray EIT system","authors":"Mason Manning, Nicholas Wharff, Shelby Horth, Jacob Roarty, Rosalind J. Sadleir, Malena I. Español","doi":"10.3934/ammc.2023004","DOIUrl":null,"url":null,"abstract":"Electrical Impedance Tomography (EIT) can map electrical property distributions within the body using a surface electrode array. EIT systems using a circumferential array applied to the abdomen can be used to monitor acute intra-abdominal hemorrhages in trauma patients. Nevertheless, these patients may also have suffered spinal injuries that might be exacerbated by lifting the patient to place the array. Thus, a half array ('hemiarray') applied only to the anterior abdomen may be more practical. However, severe reconstruction artifacts result in posterior regions using standard EIT reconstruction methods. This study proposes a novel machine learning-based approach for standard full and hemiarray EIT reconstructions, demonstrating superior reconstruction characteristics compared to conventional methods. Notably, our method mitigates the challenges of reconstructing anomalies in posterior regions. This performance advantage was consistently observed across reconstructions from simulated and real tank data. Based on our findings, we conclude that the machine learning-based hemiarray reconstruction method holds significant promise for challenging imaging scenarios, particularly when access to the anterior or posterior abdomen is restricted.","PeriodicalId":493031,"journal":{"name":"Applied Mathematics for Modern Challenges","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics for Modern Challenges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ammc.2023004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical Impedance Tomography (EIT) can map electrical property distributions within the body using a surface electrode array. EIT systems using a circumferential array applied to the abdomen can be used to monitor acute intra-abdominal hemorrhages in trauma patients. Nevertheless, these patients may also have suffered spinal injuries that might be exacerbated by lifting the patient to place the array. Thus, a half array ('hemiarray') applied only to the anterior abdomen may be more practical. However, severe reconstruction artifacts result in posterior regions using standard EIT reconstruction methods. This study proposes a novel machine learning-based approach for standard full and hemiarray EIT reconstructions, demonstrating superior reconstruction characteristics compared to conventional methods. Notably, our method mitigates the challenges of reconstructing anomalies in posterior regions. This performance advantage was consistently observed across reconstructions from simulated and real tank data. Based on our findings, we conclude that the machine learning-based hemiarray reconstruction method holds significant promise for challenging imaging scenarios, particularly when access to the anterior or posterior abdomen is restricted.
半阵列EIT系统的深度神经网络
电阻抗层析成像(EIT)可以利用表面电极阵列绘制人体内部的电特性分布。应用于腹部的环形阵列EIT系统可用于监测创伤患者的急性腹腔出血。然而,这些患者也可能遭受脊柱损伤,这些损伤可能会因将患者抬起放置阵列而加剧。因此,仅应用于前腹部的半阵列(“半阵列”)可能更实用。然而,使用标准的EIT重建方法会导致严重的重建伪影。本研究提出了一种新的基于机器学习的方法,用于标准的全阵列和半阵列EIT重建,与传统方法相比,显示出优越的重建特性。值得注意的是,我们的方法减轻了重建后区异常的挑战。这种性能优势在模拟和真实坦克数据的重建过程中得到了一致的观察。根据我们的研究结果,我们得出结论,基于机器学习的半阵列重建方法在具有挑战性的成像场景中具有重要的前景,特别是当进入前腹部或后腹部受到限制时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信