Resolution improvement and algorithmic dependence of machine learning for post-processing respiratory EIT images

Talles Batista Rattis Santos, Rafael Mikio Nakanishi, Tayran Milá Mendes Olegário, Raul Gonzalez Lima, Jennifer L. Mueller
{"title":"Resolution improvement and algorithmic dependence of machine learning for post-processing respiratory EIT images","authors":"Talles Batista Rattis Santos, Rafael Mikio Nakanishi, Tayran Milá Mendes Olegário, Raul Gonzalez Lima, Jennifer L. Mueller","doi":"10.3934/ammc.2023003","DOIUrl":null,"url":null,"abstract":"Electrical impedance tomography (EIT) is an imaging modality in which electric fields arising from currents applied on electrodes are used to form dynamic images of physiological processes, such as respiration, by plotting the reconstructed conductivity distribution. This work investigates the effectiveness of using machine learning to post-process EIT images of respiration, validated against a CT scan taken immediately after the EIT data collection, and the dependence of the results on the reconstruction algorithm used to compute the pre-processed image. Here, a training set for post-processing is computed from a set of CT scans, and a deep learning neural network is used to post-process EIT images from patients with cystic fibrosis reconstructed using (a) the D-bar method and (b) one step of a Gauss-Newton method. The images are compared using the structural similarity index measure (SSIM) to 'ground truth' EIT images derived from the CT scans. Results show that while the deep learning post-processing method effectively sharpens edges and reduces blurring, the spatial accuracy depends on the original algorithm used to compute the pre-processed image. The D-bar images result in a higher SSIM than the Gauss-Newton images, and while both sets of images are able to detect a large region of air trapping, they differ when estimating the extent of pathology.","PeriodicalId":493031,"journal":{"name":"Applied Mathematics for Modern Challenges","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics for Modern Challenges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ammc.2023003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical impedance tomography (EIT) is an imaging modality in which electric fields arising from currents applied on electrodes are used to form dynamic images of physiological processes, such as respiration, by plotting the reconstructed conductivity distribution. This work investigates the effectiveness of using machine learning to post-process EIT images of respiration, validated against a CT scan taken immediately after the EIT data collection, and the dependence of the results on the reconstruction algorithm used to compute the pre-processed image. Here, a training set for post-processing is computed from a set of CT scans, and a deep learning neural network is used to post-process EIT images from patients with cystic fibrosis reconstructed using (a) the D-bar method and (b) one step of a Gauss-Newton method. The images are compared using the structural similarity index measure (SSIM) to 'ground truth' EIT images derived from the CT scans. Results show that while the deep learning post-processing method effectively sharpens edges and reduces blurring, the spatial accuracy depends on the original algorithm used to compute the pre-processed image. The D-bar images result in a higher SSIM than the Gauss-Newton images, and while both sets of images are able to detect a large region of air trapping, they differ when estimating the extent of pathology.
呼吸EIT图像后处理中机器学习的分辨率改进及算法依赖
电阻抗断层扫描(EIT)是一种成像方式,通过绘制重建的电导率分布,利用施加在电极上的电流产生的电场来形成生理过程(如呼吸)的动态图像。这项工作研究了使用机器学习对呼吸的EIT图像进行后处理的有效性,并针对EIT数据收集后立即拍摄的CT扫描进行验证,以及结果对用于计算预处理图像的重建算法的依赖性。在这里,从一组CT扫描中计算一个用于后处理的训练集,并使用深度学习神经网络对囊性纤维化患者的EIT图像进行后处理,这些图像使用(a) D-bar法和(b)一步高斯-牛顿法重建。使用结构相似指数测量(SSIM)将图像与来自CT扫描的“地面真实”EIT图像进行比较。结果表明,虽然深度学习后处理方法可以有效地锐化边缘并减少模糊,但空间精度取决于用于计算预处理图像的原始算法。d条图像的SSIM比高斯-牛顿图像高,虽然两组图像都能够检测到大面积的空气捕获,但在估计病理程度时它们不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信