Stress and Plastic Strain Partitioning Behaviors and Those Contributions to Martensitic Transformation of Retained Austenite in Medium Manganese and Transformation-Induced Plasticity-Aided Bainitic Ferrite Steels

IF 0.3 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Tomohiko Hojo, Motomichi Koyama, Bakuya Kumai, Yutao Zhou, Yuki Shibayama, Ayumi Shiro, Takahisa Shobu, Hiroyuki Saitoh, Saya Ajito, Eiji Akiyama
{"title":"Stress and Plastic Strain Partitioning Behaviors and Those Contributions to Martensitic Transformation of Retained Austenite in Medium Manganese and Transformation-Induced Plasticity-Aided Bainitic Ferrite Steels","authors":"Tomohiko Hojo, Motomichi Koyama, Bakuya Kumai, Yutao Zhou, Yuki Shibayama, Ayumi Shiro, Takahisa Shobu, Hiroyuki Saitoh, Saya Ajito, Eiji Akiyama","doi":"10.2355/tetsutohagane.tetsu-2023-062","DOIUrl":null,"url":null,"abstract":"Stress and plastic strain distributions and those partitioning behaviors of ferrite and retained austenite were investigated in the medium manganese (Mn) and the transformation-induced plasticity-aided bainitic ferrite (TBF) steels, and the martensitic transformation behaviors of retained austenite during Lüders elongation and work hardening were analyzed using synchrotron X-ray diffraction at SPring-8. The stress and plastic strain of retained austenite and volume fraction of retained austenite were remarkably changed during Lüders deformation in the medium Mn steel, implying that the medium Mn steel possessed inhomogeneous deformation at the parallel part of the tensile specimen. On the other hand, the distributions of the stress, plastic strain and volume fraction of retained austenite were homogeneous and the homogeneous deformation occurred at the parallel part of the tensile specimen at the plastic deformation regime with work hardening in the medium Mn and TBF steels. The martensitic transformation of retained austenite at Lüders deformation in the medium Mn steel was possessed owing to the application of high stress and preferential deformation at retained austenite, resulting in a significant increase in the plastic deformation and reduction of stress in the retained austenite. The martensitic transformation of retained austenite at the plastic deformation regime with work hardening was induced by the high dislocation density and newly applied plastic deformation in retained austenite in the medium Mn steel whereas the TBF steel possessed gradual transformation of retained austenite which is applied high tensile stress and moderate plastic deformation.","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"22 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-062","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Stress and plastic strain distributions and those partitioning behaviors of ferrite and retained austenite were investigated in the medium manganese (Mn) and the transformation-induced plasticity-aided bainitic ferrite (TBF) steels, and the martensitic transformation behaviors of retained austenite during Lüders elongation and work hardening were analyzed using synchrotron X-ray diffraction at SPring-8. The stress and plastic strain of retained austenite and volume fraction of retained austenite were remarkably changed during Lüders deformation in the medium Mn steel, implying that the medium Mn steel possessed inhomogeneous deformation at the parallel part of the tensile specimen. On the other hand, the distributions of the stress, plastic strain and volume fraction of retained austenite were homogeneous and the homogeneous deformation occurred at the parallel part of the tensile specimen at the plastic deformation regime with work hardening in the medium Mn and TBF steels. The martensitic transformation of retained austenite at Lüders deformation in the medium Mn steel was possessed owing to the application of high stress and preferential deformation at retained austenite, resulting in a significant increase in the plastic deformation and reduction of stress in the retained austenite. The martensitic transformation of retained austenite at the plastic deformation regime with work hardening was induced by the high dislocation density and newly applied plastic deformation in retained austenite in the medium Mn steel whereas the TBF steel possessed gradual transformation of retained austenite which is applied high tensile stress and moderate plastic deformation.
中锰残余奥氏体马氏体相变及相变诱导的塑性辅助贝氏体铁素体钢的应力和塑性应变分配行为
研究了中锰(Mn)钢和相变诱导的塑性辅助贝氏体铁素体(TBF)钢中铁素体和残余奥氏体的应力和塑性应变分布及分配行为,并利用同步x射线衍射分析了残余奥氏体在 ders延伸和加工硬化过程中的马氏体相变行为。中Mn钢在l ders变形过程中,残余奥氏体的应力和塑性应变以及残余奥氏体的体积分数发生了显著变化,表明中Mn钢在拉伸试样的平行部分具有不均匀变形。另一方面,中锰钢和TBF钢的应力、塑性应变和残余奥氏体的体积分数分布均匀,在加工硬化塑性变形状态下,拉伸试样的平行部分发生均匀变形。由于在残余奥氏体上施加了高应力和优先变形,使得残余奥氏体的塑性变形显著增加,应力显著减小,从而使残余奥氏体在中锰钢的l德氏体变形时发生马氏体转变。中Mn钢中残余奥氏体的高位错密度和新引入的塑性变形诱发了塑性变形区残余奥氏体的马氏体转变,而TBF钢中残余奥氏体的逐渐转变是在高拉应力和中等塑性变形的作用下发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: The journal ISIJ International first appeared in 1961 under the title Tetsu-to-Hagané Overseas. The title was changed in 1966 to Transactions of The Iron and Steel Institute of Japan and again in 1989 to the current ISIJ International. The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials. Classification I Fundamentals of High Temperature Processes II Ironmaking III Steelmaking IV Casting and Solidification V Instrumentation, Control, and System Engineering VI Chemical and Physical Analysis VII Forming Processing and Thermomechanical Treatment VIII Welding and Joining IX Surface Treatment and Corrosion X Transformations and Microstructures XI Mechanical Properties XII Physical Properties XIII New Materials and Processes XIV Social and Environmental Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信