{"title":"Definability of Boolean Functions in Kripke Semantics","authors":"Naosuke Matsuda","doi":"10.1215/00294527-2023-0011","DOIUrl":null,"url":null,"abstract":"A set F of Boolean functions is said to be functionally complete if every Boolean function is definable by combining functions in F. Post clarified when a set of Boolean functions is functionally complete (with respect to classical semantics). In this paper, by extending Post’s theorem, we clarify when a set of Boolean functions is functionally complete with respect to Kripke semantics.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00294527-2023-0011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
A set F of Boolean functions is said to be functionally complete if every Boolean function is definable by combining functions in F. Post clarified when a set of Boolean functions is functionally complete (with respect to classical semantics). In this paper, by extending Post’s theorem, we clarify when a set of Boolean functions is functionally complete with respect to Kripke semantics.
期刊介绍:
The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.