{"title":"Stable Variable Selection for High-Dimensional Genomic Data with Strong Correlations","authors":"Reetika Sarkar, Sithija Manage, Xiaoli Gao","doi":"10.1007/s40745-023-00481-5","DOIUrl":null,"url":null,"abstract":"<div><p>High-dimensional genomic data studies are often found to exhibit strong correlations, which results in instability and inconsistency in the estimates obtained using commonly used regularization approaches including the Lasso and MCP, etc. In this paper, we perform comparative study of regularization approaches for variable selection under different correlation structures and propose a two-stage procedure named rPGBS to address the issue of stable variable selection in various strong correlation settings. This approach involves repeatedly running a two-stage hierarchical approach consisting of a random pseudo-group clustering and bi-level variable selection. Extensive simulation studies and high-dimensional genomic data analysis on real datasets have demonstrated the advantage of the proposed rPGBS method over some of the most used regularization methods. In particular, rPGBS results in more stable selection of variables across a variety of correlation settings, as compared to some recent methods addressing variable selection with strong correlations: Precision Lasso (Wang et al. in Bioinformatics 35:1181–1187, 2019) and Whitening Lasso (Zhu et al. in Bioinformatics 37:2238–2244, 2021). Moreover, rPGBS has been shown to be computationally efficient across various settings.\n</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00481-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
High-dimensional genomic data studies are often found to exhibit strong correlations, which results in instability and inconsistency in the estimates obtained using commonly used regularization approaches including the Lasso and MCP, etc. In this paper, we perform comparative study of regularization approaches for variable selection under different correlation structures and propose a two-stage procedure named rPGBS to address the issue of stable variable selection in various strong correlation settings. This approach involves repeatedly running a two-stage hierarchical approach consisting of a random pseudo-group clustering and bi-level variable selection. Extensive simulation studies and high-dimensional genomic data analysis on real datasets have demonstrated the advantage of the proposed rPGBS method over some of the most used regularization methods. In particular, rPGBS results in more stable selection of variables across a variety of correlation settings, as compared to some recent methods addressing variable selection with strong correlations: Precision Lasso (Wang et al. in Bioinformatics 35:1181–1187, 2019) and Whitening Lasso (Zhu et al. in Bioinformatics 37:2238–2244, 2021). Moreover, rPGBS has been shown to be computationally efficient across various settings.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.