Tan Gemicioglu, R. Michael Winters, Yu-Te Wang, Thomas M. Gable, Ivan J. Tashev
{"title":"TongueTap: Multimodal Tongue Gesture Recognition with Head-Worn Devices","authors":"Tan Gemicioglu, R. Michael Winters, Yu-Te Wang, Thomas M. Gable, Ivan J. Tashev","doi":"10.1145/3577190.3614120","DOIUrl":null,"url":null,"abstract":"Mouth-based interfaces are a promising new approach enabling silent, hands-free and eyes-free interaction with wearable devices. However, interfaces sensing mouth movements are traditionally custom-designed and placed near or within the mouth. TongueTap synchronizes multimodal EEG, PPG, IMU, eye tracking and head tracking data from two commercial headsets to facilitate tongue gesture recognition using only off-the-shelf devices on the upper face. We classified eight closed-mouth tongue gestures with 94% accuracy, offering an invisible and inaudible method for discreet control of head-worn devices. Moreover, we found that the IMU alone differentiates eight gestures with 80% accuracy and a subset of four gestures with 92% accuracy. We built a dataset of 48,000 gesture trials across 16 participants, allowing TongueTap to perform user-independent classification. Our findings suggest tongue gestures can be a viable interaction technique for VR/AR headsets and earables without requiring novel hardware.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mouth-based interfaces are a promising new approach enabling silent, hands-free and eyes-free interaction with wearable devices. However, interfaces sensing mouth movements are traditionally custom-designed and placed near or within the mouth. TongueTap synchronizes multimodal EEG, PPG, IMU, eye tracking and head tracking data from two commercial headsets to facilitate tongue gesture recognition using only off-the-shelf devices on the upper face. We classified eight closed-mouth tongue gestures with 94% accuracy, offering an invisible and inaudible method for discreet control of head-worn devices. Moreover, we found that the IMU alone differentiates eight gestures with 80% accuracy and a subset of four gestures with 92% accuracy. We built a dataset of 48,000 gesture trials across 16 participants, allowing TongueTap to perform user-independent classification. Our findings suggest tongue gestures can be a viable interaction technique for VR/AR headsets and earables without requiring novel hardware.