Explainable Depression Detection using Multimodal Behavioural Cues

Monika Gahalawat
{"title":"Explainable Depression Detection using Multimodal Behavioural Cues","authors":"Monika Gahalawat","doi":"10.1145/3577190.3614227","DOIUrl":null,"url":null,"abstract":"Depression is a severe mental illness that not only affects the patient but also has major social and economical implications. Recent studies have employed artificial intelligence using multimodal behavioural cues to objectively investigate depression and alleviate the subjectivity involved in current depression diagnostic process. However, head motion has received a fairly limited attention as a behavioural marker for detecting depression and the lack of explainability of the \"black box\" approaches have restricted their widespread adoption. Consequently, the objective of this research is to examine the utility of fundamental head-motion units termed kinemes and explore the explainability of multimodal behavioural cues for depression detection. To this end, the research to date evaluated depression classification performance on the BlackDog and AVEC2013 datasets using multiple machine learning methods. Our findings indicate that: (a) head motion patterns are effective cues for depression assessment, and (b) explanatory kineme patterns can be observed for the two classes, consistent with prior research.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Depression is a severe mental illness that not only affects the patient but also has major social and economical implications. Recent studies have employed artificial intelligence using multimodal behavioural cues to objectively investigate depression and alleviate the subjectivity involved in current depression diagnostic process. However, head motion has received a fairly limited attention as a behavioural marker for detecting depression and the lack of explainability of the "black box" approaches have restricted their widespread adoption. Consequently, the objective of this research is to examine the utility of fundamental head-motion units termed kinemes and explore the explainability of multimodal behavioural cues for depression detection. To this end, the research to date evaluated depression classification performance on the BlackDog and AVEC2013 datasets using multiple machine learning methods. Our findings indicate that: (a) head motion patterns are effective cues for depression assessment, and (b) explanatory kineme patterns can be observed for the two classes, consistent with prior research.
使用多模式行为线索的可解释抑郁检测
抑郁症是一种严重的精神疾病,不仅影响患者,而且具有重大的社会和经济影响。最近的研究利用人工智能的多模态行为线索来客观地调查抑郁症,减轻当前抑郁症诊断过程中的主观性。然而,头部运动作为一种检测抑郁症的行为标记受到了相当有限的关注,而且“黑匣子”方法缺乏可解释性,限制了它们的广泛采用。因此,本研究的目的是检验被称为运动学的基本头部运动单元的效用,并探索抑郁症检测的多模态行为线索的可解释性。为此,迄今为止的研究使用多种机器学习方法评估了BlackDog和AVEC2013数据集上的抑郁症分类性能。我们的研究结果表明:(a)头部运动模式是抑郁评估的有效线索;(b)可以观察到两个类别的解释性动力模式,与先前的研究一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信