Towards Autonomous Physiological Signal Extraction From Thermal Videos Using Deep Learning

Kapotaksha Das, Mohamed Abouelenien, Mihai G. Burzo, John Elson, Kwaku Prakah-Asante, Clay Maranville
{"title":"Towards Autonomous Physiological Signal Extraction From Thermal Videos Using Deep Learning","authors":"Kapotaksha Das, Mohamed Abouelenien, Mihai G. Burzo, John Elson, Kwaku Prakah-Asante, Clay Maranville","doi":"10.1145/3577190.3614123","DOIUrl":null,"url":null,"abstract":"Using the thermal modality in order to extract physiological signals as a noncontact means of remote monitoring is gaining traction in applications, such as healthcare monitoring. However, existing methods rely heavily on traditional tracking and mostly unsupervised signal processing methods, which could be affected significantly by noise and subjects’ movements. Using a novel deep learning architecture based on convolutional long short-term memory networks on a diverse dataset of 36 subjects, we present a personalized approach to extract multimodal signals, including the heart rate, respiration rate, and body temperature from thermal videos. We perform multimodal signal extraction for subjects in states of both active speaking and silence, requiring no parameter tuning in an end-to-end deep learning approach with automatic feature extraction. We experiment with different data sampling methods for training our deep learning models, as well as different network designs. Our results indicate the effectiveness and improved efficiency of the proposed models reaching more than 90% accuracy based on the availability of proper training data for each subject.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the thermal modality in order to extract physiological signals as a noncontact means of remote monitoring is gaining traction in applications, such as healthcare monitoring. However, existing methods rely heavily on traditional tracking and mostly unsupervised signal processing methods, which could be affected significantly by noise and subjects’ movements. Using a novel deep learning architecture based on convolutional long short-term memory networks on a diverse dataset of 36 subjects, we present a personalized approach to extract multimodal signals, including the heart rate, respiration rate, and body temperature from thermal videos. We perform multimodal signal extraction for subjects in states of both active speaking and silence, requiring no parameter tuning in an end-to-end deep learning approach with automatic feature extraction. We experiment with different data sampling methods for training our deep learning models, as well as different network designs. Our results indicate the effectiveness and improved efficiency of the proposed models reaching more than 90% accuracy based on the availability of proper training data for each subject.
基于深度学习的热视频自主生理信号提取
利用热模态提取生理信号作为一种非接触式远程监测手段,在医疗保健监测等应用中越来越受到关注。然而,现有的方法严重依赖于传统的跟踪和大多数无监督的信号处理方法,这些方法可能受到噪声和受试者运动的显著影响。使用基于卷积长短期记忆网络的新颖深度学习架构,我们提出了一种个性化的方法,从热视频中提取多模态信号,包括心率、呼吸频率和体温。我们在主动说话和沉默状态下对受试者进行多模态信号提取,不需要在端到端深度学习方法中进行参数调整,并进行自动特征提取。我们尝试了不同的数据采样方法来训练我们的深度学习模型,以及不同的网络设计。我们的结果表明,基于每个主题适当的训练数据的可用性,所提出的模型的有效性和提高的效率达到90%以上的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信