Geodesic flows modeled by expansive flows: Compact surfaces without conjugate points and continuous Green bundles

IF 0.8 4区 数学 Q2 MATHEMATICS
Rafael O. Ruggiero, Katrin Gelfert
{"title":"Geodesic flows modeled by expansive flows: Compact surfaces without conjugate points and continuous Green bundles","authors":"Rafael O. Ruggiero, Katrin Gelfert","doi":"10.5802/aif.3574","DOIUrl":null,"url":null,"abstract":"We study the geodesic flow of a compact surface without conjugate points and genus greater than one and continuous Green bundles. Identifying each strip of bi-asymptotic geodesics induces an equivalence relation on the unit tangent bundle. Its quotient space is shown to carry the structure of a 3-dimensional compact manifold. This manifold carries a canonically defined continuous flow which is expansive, time-preserving semi-conjugate to the geodesic flow, and has a local product structure. An essential step towards the proof of these properties is to study regularity properties of the horospherical foliations and to show that they are indeed tangent to the Green subbundles. As an application it is shown that the geodesic flow has a unique measure of maximal entropy.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/aif.3574","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the geodesic flow of a compact surface without conjugate points and genus greater than one and continuous Green bundles. Identifying each strip of bi-asymptotic geodesics induces an equivalence relation on the unit tangent bundle. Its quotient space is shown to carry the structure of a 3-dimensional compact manifold. This manifold carries a canonically defined continuous flow which is expansive, time-preserving semi-conjugate to the geodesic flow, and has a local product structure. An essential step towards the proof of these properties is to study regularity properties of the horospherical foliations and to show that they are indeed tangent to the Green subbundles. As an application it is shown that the geodesic flow has a unique measure of maximal entropy.
由膨胀流模拟的测地线流:无共轭点的紧致曲面和连续格林束
研究了无共轭点且格数大于1的连续格林束紧曲面的测地线流。确定每条双渐近测地线,在单位切线束上推导出等价关系。它的商空间具有三维紧流形的结构。该流形携带一个标准定义的连续流,它是膨胀的,保持时间的半共轭于测地线流,并具有局部积结构。证明这些性质的一个重要步骤是研究顺球叶的正则性,并证明它们确实与格林子束相切。作为一个应用,证明了测地线流具有独特的最大熵测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信