Exact coefficients of finite-size corrections in the Ising model withBrascamp-Kunz boundary conditions and their relationships forstrip and cylindrical geometries

Nickolay Izmailian, Ralph Kenna, Vladimir Papoyan
{"title":"Exact coefficients of finite-size corrections in the Ising model withBrascamp-Kunz boundary conditions and their relationships forstrip and cylindrical geometries","authors":"Nickolay Izmailian, Ralph Kenna, Vladimir Papoyan","doi":"10.1088/1751-8121/acf96b","DOIUrl":null,"url":null,"abstract":"Abstract We derive exact finite-size corrections for the free energy F of the Ising model on the <?CDATA ${\\cal M} \\times 2 {\\cal N}$?> square lattice with Brascamp–Kunz boundary conditions. We calculate ratios <?CDATA $r_p(\\rho)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> of p th coefficients of F for the infinitely long cylinder ( <?CDATA ${\\cal M} \\to \\infty$?> ) and the infinitely long Brascamp–Kunz strip ( <?CDATA ${\\cal N} \\to \\infty$?> ) at varying values of the aspect ratio <?CDATA $\\rho = {(\\cal M}+1) / 2{\\cal N}$?> . Like previous studies have shown for the two-dimensional dimer model, the limiting values <?CDATA $p \\to \\infty$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:math> of <?CDATA $r_p(\\rho)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> exhibit abrupt anomalous behavior at certain values of ρ . These critical values of ρ and the limiting values of the finite-size-expansion-coefficient ratios differ, however, between the two models.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acf96b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We derive exact finite-size corrections for the free energy F of the Ising model on the square lattice with Brascamp–Kunz boundary conditions. We calculate ratios r p ( ρ ) of p th coefficients of F for the infinitely long cylinder ( ) and the infinitely long Brascamp–Kunz strip ( ) at varying values of the aspect ratio . Like previous studies have shown for the two-dimensional dimer model, the limiting values p of r p ( ρ ) exhibit abrupt anomalous behavior at certain values of ρ . These critical values of ρ and the limiting values of the finite-size-expansion-coefficient ratios differ, however, between the two models.
带brascamp - kunz边界条件的Ising模型中有限尺寸修正的精确系数及其与条形几何的关系
摘要我们在具有Brascamp-Kunz边界条件的方形晶格上,导出了Ising模型的自由能F的精确有限尺寸修正。我们计算了无限长圆柱体()和无限长布拉斯坎普-昆兹带()在不同宽高比值下的系数r p (ρ)。就像以前的研究表明的二维二聚体模型一样,r p (ρ)的极限值p→∞在某些ρ值下表现出突然的异常行为。然而,在两种模型之间,ρ的临界值和有限尺寸-膨胀-系数比值的极限值是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信