Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David C. Parkes, Sai Srivatsa Ravindranath
{"title":"Optimal Auctions through Deep Learning: Advances in Differentiable Economics","authors":"Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David C. Parkes, Sai Srivatsa Ravindranath","doi":"10.1145/3630749","DOIUrl":null,"url":null,"abstract":"Designing an incentive compatible auction that maximizes expected revenue is an intricate task. The single-item case was resolved in a seminal piece of work by Myerson in 1981, but more than 40 years later, a full analytical understanding of the optimal design still remains elusive for settings with two or more items. In this work, we initiate the exploration of the use of tools from deep learning for the automated design of optimal auctions. We model an auction as a multi-layer neural network, frame optimal auction design as a constrained learning problem, and show how it can be solved using standard machine learning pipelines. In addition to providing generalization bounds, we present extensive experimental results, recovering essentially all known solutions that come from the theoretical analysis of optimal auction design problems and obtaining novel mechanisms for settings in which the optimal mechanism is unknown.","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"3 3","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3630749","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2
Abstract
Designing an incentive compatible auction that maximizes expected revenue is an intricate task. The single-item case was resolved in a seminal piece of work by Myerson in 1981, but more than 40 years later, a full analytical understanding of the optimal design still remains elusive for settings with two or more items. In this work, we initiate the exploration of the use of tools from deep learning for the automated design of optimal auctions. We model an auction as a multi-layer neural network, frame optimal auction design as a constrained learning problem, and show how it can be solved using standard machine learning pipelines. In addition to providing generalization bounds, we present extensive experimental results, recovering essentially all known solutions that come from the theoretical analysis of optimal auction design problems and obtaining novel mechanisms for settings in which the optimal mechanism is unknown.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining