Comparison of Triple Exponential Smoothing and Support Vector Regression Algorithms in Predicting Drug Usage at Puskesmas

Syafira Agnesti, Alwis Nazir, Iwan Iskandar, Elvia Budianita, Iis Afrianty
{"title":"Comparison of Triple Exponential Smoothing and Support Vector Regression Algorithms in Predicting Drug Usage at Puskesmas","authors":"Syafira Agnesti, Alwis Nazir, Iwan Iskandar, Elvia Budianita, Iis Afrianty","doi":"10.32520/stmsi.v12i3.3499","DOIUrl":null,"url":null,"abstract":"Drug management is important in managing adequate drug supplies in Puskesmas, to avoid errors in controlling existing drug stock inventory, it is necessary to predict the amount of drug usage by comparing Data Mining methods and Machine Learning methods, using the Triple Exponential Smoothing (TES) and Support Vector Regression (SVR) algorithms. Implementation is done using the Python programming language. The data used is Amlodipine 10 mg and Amoxicillin 500 mg drug data with a period of 42 months, from January 2020 - June 2023. This study aims to determine the best algorithm by comparing prediction error rate using the Mean Absolute Percentage Error (MAPE) method. Based on research that has been conducted on Amlodipine 10 mg and Amoxicillin 500 mg drugs with a division of 80% training data and 20% testing data, the Triple Exponential Smoothing algorithm with an additive model produces MAPE values of 10.36% and 17.50% respectively with the \"Good\" category. While Support Vector Regression algorithm, with RBF kernel, complexity 1.0, and epsilon 0.1 produces MAPE values of 10.31% and 9.38% in the \"Good\" and \"Very Good\" categories, respectively. Based on this, it can be concluded that Support Vector Regression algorithm is better at predicting than the Triple Exponential Smoothing algorithm.","PeriodicalId":32357,"journal":{"name":"Jurnal Sistem Informasi","volume":"407-408 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32520/stmsi.v12i3.3499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drug management is important in managing adequate drug supplies in Puskesmas, to avoid errors in controlling existing drug stock inventory, it is necessary to predict the amount of drug usage by comparing Data Mining methods and Machine Learning methods, using the Triple Exponential Smoothing (TES) and Support Vector Regression (SVR) algorithms. Implementation is done using the Python programming language. The data used is Amlodipine 10 mg and Amoxicillin 500 mg drug data with a period of 42 months, from January 2020 - June 2023. This study aims to determine the best algorithm by comparing prediction error rate using the Mean Absolute Percentage Error (MAPE) method. Based on research that has been conducted on Amlodipine 10 mg and Amoxicillin 500 mg drugs with a division of 80% training data and 20% testing data, the Triple Exponential Smoothing algorithm with an additive model produces MAPE values of 10.36% and 17.50% respectively with the "Good" category. While Support Vector Regression algorithm, with RBF kernel, complexity 1.0, and epsilon 0.1 produces MAPE values of 10.31% and 9.38% in the "Good" and "Very Good" categories, respectively. Based on this, it can be concluded that Support Vector Regression algorithm is better at predicting than the Triple Exponential Smoothing algorithm.
三指数平滑算法与支持向量回归算法在Puskesmas药物使用预测中的比较
药品管理在Puskesmas管理充足的药品供应中至关重要,为了避免控制现有药品库存的错误,有必要通过比较数据挖掘方法和机器学习方法,使用三指数平滑(TES)和支持向量回归(SVR)算法来预测药品使用量。使用Python编程语言实现。使用的数据为氨氯地平10mg和阿莫西林500mg药物数据,为期42个月,从2020年1月至2023年6月。本研究旨在通过比较平均绝对百分比误差(MAPE)方法的预测错误率来确定最佳算法。以氨氯地平10 mg和阿莫西林500 mg药物为研究对象,训练数据占80%,测试数据占20%,采用加性模型的三重指数平滑算法得到的“良好”类别的MAPE值分别为10.36%和17.50%。而采用RBF核、复杂度为1.0、epsilon为0.1的支持向量回归算法在“Good”和“Very Good”类别下的MAPE值分别为10.31%和9.38%。基于此,可以得出支持向量回归算法的预测效果优于三指数平滑算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信