Physical and mathematical modeling of frost resistance for cement concretes

Lev M. Dobshits
{"title":"Physical and mathematical modeling of frost resistance for cement concretes","authors":"Lev M. Dobshits","doi":"10.22363/1815-5235-2023-19-3-313-321","DOIUrl":null,"url":null,"abstract":"The key factor of engineering structures made of concrete and reinforced concrete is insufficient frost resistance of concretes. It is important to identify the causes and prevent concrete damage caused by frost. The research provides the basic points of the developed physical and mathematical theory of cement concretes frost resistance. Under consideration are the processes occurring during cyclic freezing and thawing of concrete in a water-saturated state. The results of the performed theoretical and experimental studies are presented. The criterion of concrete frost resistance, which estimates the pore structure of concrete, was derived on the basis of the obtained results. The suggested criterion has a close correlative relation with the frost resistance of concrete. Using this interrelation, the method was proposed for accelerated determination of actual frost resistance of concrete, as well as the method of selection concretes' compositions for a specified design frost resistance of concretes. The methods of accelerated determination of concrete frost resistance, as well as ways to increase it, are described. The developed physical and mathematical model was used to carry out computational modeling for freezing of an extended concrete structure. This made it possible to determine the changes in humidity, temperature, and pressure in concrete during cyclic freezing and thawing at different distances from the surface of its freezing and also draw graphs of changes in these parameters. The recommendations on assignment of concrete design grades by frost resistance for various elements of concrete and reinforced concrete structures are given.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2023-19-3-313-321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The key factor of engineering structures made of concrete and reinforced concrete is insufficient frost resistance of concretes. It is important to identify the causes and prevent concrete damage caused by frost. The research provides the basic points of the developed physical and mathematical theory of cement concretes frost resistance. Under consideration are the processes occurring during cyclic freezing and thawing of concrete in a water-saturated state. The results of the performed theoretical and experimental studies are presented. The criterion of concrete frost resistance, which estimates the pore structure of concrete, was derived on the basis of the obtained results. The suggested criterion has a close correlative relation with the frost resistance of concrete. Using this interrelation, the method was proposed for accelerated determination of actual frost resistance of concrete, as well as the method of selection concretes' compositions for a specified design frost resistance of concretes. The methods of accelerated determination of concrete frost resistance, as well as ways to increase it, are described. The developed physical and mathematical model was used to carry out computational modeling for freezing of an extended concrete structure. This made it possible to determine the changes in humidity, temperature, and pressure in concrete during cyclic freezing and thawing at different distances from the surface of its freezing and also draw graphs of changes in these parameters. The recommendations on assignment of concrete design grades by frost resistance for various elements of concrete and reinforced concrete structures are given.
水泥混凝土抗冻性的物理和数学建模
混凝土和钢筋混凝土构成的工程结构的关键因素是混凝土抗冻性不足。查明原因,防止混凝土冻损是十分重要的。该研究为发达的水泥混凝土抗冻性物理理论和数学理论提供了基本观点。考虑了混凝土在饱和水状态下的循环冻融过程。给出了理论和实验研究的结果。在此基础上,导出了混凝土抗冻性准则,即对混凝土孔隙结构的估计。该准则与混凝土的抗冻性密切相关。利用这种相互关系,提出了加速测定混凝土实际抗冻性能的方法,以及为特定设计混凝土抗冻性能选择混凝土成分的方法。介绍了混凝土抗冻性的加速测定方法和提高抗冻性的方法。利用所建立的物理和数学模型对某扩展混凝土结构冻结进行了计算建模。这样就可以确定在距离混凝土冻结面不同距离处,混凝土在循环冻结和融化过程中湿度、温度和压力的变化,并绘制出这些参数的变化曲线图。对混凝土和钢筋混凝土结构的各种构件按抗冻性分配混凝土设计等级提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
26
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信