Manuja Gunasena, Mario Alles, Yasasvi Wijewantha, Will Mulhern, Emily Bowman, Janelle Gabriel, Aaren Kettelhut, Amrendra Kumar, Krishanthi Weragalaarachchi, Dhanuja Kasturiratna, Jeffrey C Horowitz, Scott Scrape, Sonal R Pannu, Shan-Lu Liu, Anna Vilgelm, Saranga Wijeratne, Joseph S Bednash, Thorsten Demberg, Nicholas T Funderburg, Namal Liyanage
{"title":"Synergistic Role of NK Cells and Monocytes in Promoting Atherogenesis in Severe COVID-19 Patients.","authors":"Manuja Gunasena, Mario Alles, Yasasvi Wijewantha, Will Mulhern, Emily Bowman, Janelle Gabriel, Aaren Kettelhut, Amrendra Kumar, Krishanthi Weragalaarachchi, Dhanuja Kasturiratna, Jeffrey C Horowitz, Scott Scrape, Sonal R Pannu, Shan-Lu Liu, Anna Vilgelm, Saranga Wijeratne, Joseph S Bednash, Thorsten Demberg, Nicholas T Funderburg, Namal Liyanage","doi":"10.1101/2023.11.10.23298322","DOIUrl":null,"url":null,"abstract":"Clinical data demonstrate an increased predisposition to cardiovascular disease (CVD) following severe COVID-19 infection. This may be driven by a dysregulated immune response associated with severe disease. Monocytes and vascular tissue resident macrophages play a critical role in atherosclerosis, the main pathology leading to ischemic CVD. Natural killer (NK) cells are a heterogenous group of cells that are critical during viral pathogenesis and are known to be dysregulated during severe COVID-19 infection. Their role in atherosclerotic cardiovascular disease has recently been described. However, the contribution of their altered phenotypes to atherogenesis following severe COVID-19 infection is unknown. We demonstrate for the first time that during and after severe COVID-19, circulating proinflammatory monocytes and activated NK cells act synergistically to increase uptake of oxidized low-density lipoprotein (Ox-LDL) into vascular tissue with subsequent foam cell generation leading to atherogenesis despite recovery from acute infection. Our data provide new insights, revealing the roles of monocytes/macrophages, and NK cells in COVID-19-related atherogenesis.","PeriodicalId":478577,"journal":{"name":"medRxiv (Cold Spring Harbor Laboratory)","volume":"9 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.10.23298322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical data demonstrate an increased predisposition to cardiovascular disease (CVD) following severe COVID-19 infection. This may be driven by a dysregulated immune response associated with severe disease. Monocytes and vascular tissue resident macrophages play a critical role in atherosclerosis, the main pathology leading to ischemic CVD. Natural killer (NK) cells are a heterogenous group of cells that are critical during viral pathogenesis and are known to be dysregulated during severe COVID-19 infection. Their role in atherosclerotic cardiovascular disease has recently been described. However, the contribution of their altered phenotypes to atherogenesis following severe COVID-19 infection is unknown. We demonstrate for the first time that during and after severe COVID-19, circulating proinflammatory monocytes and activated NK cells act synergistically to increase uptake of oxidized low-density lipoprotein (Ox-LDL) into vascular tissue with subsequent foam cell generation leading to atherogenesis despite recovery from acute infection. Our data provide new insights, revealing the roles of monocytes/macrophages, and NK cells in COVID-19-related atherogenesis.