Bayesian joint quantile autoregression

test Pub Date : 2023-11-12 DOI:10.1007/s11749-023-00895-6
Jorge Castillo-Mateo, Alan E. Gelfand, Jesús Asín, Ana C. Cebrián, Jesús Abaurrea
{"title":"Bayesian joint quantile autoregression","authors":"Jorge Castillo-Mateo, Alan E. Gelfand, Jesús Asín, Ana C. Cebrián, Jesús Abaurrea","doi":"10.1007/s11749-023-00895-6","DOIUrl":null,"url":null,"abstract":"Abstract Quantile regression continues to increase in usage, providing a useful alternative to customary mean regression. Primary implementation takes the form of so-called multiple quantile regression, creating a separate regression for each quantile of interest. However, recently, advances have been made in joint quantile regression, supplying a quantile function which avoids crossing of the regression across quantiles. Here, we turn to quantile autoregression (QAR), offering a fully Bayesian version. We extend the initial quantile regression work of Koenker and Xiao (J Am Stat Assoc 101(475):980–990, 2006. https://doi.org/10.1198/016214506000000672 ) in the spirit of Tokdar and Kadane (Bayesian Anal 7(1):51–72, 2012. https://doi.org/10.1214/12-BA702 ). We offer a directly interpretable parametric model specification for QAR. Further, we offer a pth-order QAR(p) version, a multivariate QAR(1) version, and a spatial QAR(1) version. We illustrate with simulation as well as a temperature dataset collected in Aragón, Spain.","PeriodicalId":101465,"journal":{"name":"test","volume":"83 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11749-023-00895-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Quantile regression continues to increase in usage, providing a useful alternative to customary mean regression. Primary implementation takes the form of so-called multiple quantile regression, creating a separate regression for each quantile of interest. However, recently, advances have been made in joint quantile regression, supplying a quantile function which avoids crossing of the regression across quantiles. Here, we turn to quantile autoregression (QAR), offering a fully Bayesian version. We extend the initial quantile regression work of Koenker and Xiao (J Am Stat Assoc 101(475):980–990, 2006. https://doi.org/10.1198/016214506000000672 ) in the spirit of Tokdar and Kadane (Bayesian Anal 7(1):51–72, 2012. https://doi.org/10.1214/12-BA702 ). We offer a directly interpretable parametric model specification for QAR. Further, we offer a pth-order QAR(p) version, a multivariate QAR(1) version, and a spatial QAR(1) version. We illustrate with simulation as well as a temperature dataset collected in Aragón, Spain.

Abstract Image

贝叶斯联合分位数自回归
分位数回归的使用不断增加,为习惯均值回归提供了一种有用的替代方法。主要实现采用所谓的多分位数回归的形式,为每个感兴趣的分位数创建单独的回归。然而,最近在联合分位数回归方面取得了进展,提供了一个分位数函数,避免了回归在分位数之间的交叉。在这里,我们转向分位数自回归(QAR),提供一个完整的贝叶斯版本。我们扩展了Koenker和Xiao的初始分位数回归工作[J] .中国生物医学工程学报,31(4):980-990,2006。https://doi.org/10.1198/016214506000000672)以Tokdar和Kadane的精神(贝叶斯分析7(1):51-72,2012。https://doi.org/10.1214/12-BA702)。我们为QAR提供了一个可直接解释的参数化模型规范。此外,我们还提供了一个p阶QAR(p)版本、一个多元QAR(1)版本和一个空间QAR(1)版本。我们用模拟以及在西班牙Aragón收集的温度数据集来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信