{"title":"Study on iodine adsorption capacity and adsorption mechanism of AgY","authors":"Cheng Zhang, Zexiang Chen, Jianrong Hou, Hongzheng Ren, Zhen Wang, Xin Li, Yongguo Li, Haixia Kong, Haifeng Yu, Jie Yu","doi":"10.1080/00223131.2023.2276397","DOIUrl":null,"url":null,"abstract":"ABSTRACTTo systematically study the methyl iodide (CH3I) adsorption performance and adsorption mechanism of Ag ion exchange NaY zeolite (AgY), AgY adsorbents with different Ag content were selected. 16.6% AgY was capable of storing 150 mg/g and 275 mg/g of CH3I when the penetrated CH3I reached 1‰ and 100% inlet concentration. TEM and EDS results presented a high relationship between Ag dispersion and CH3I adsorption capability. The formation of a stable AgI complex rationalized the CH3I adsorption mechanism on AgY. Compared to AgX, AgY was verified to possess a strong acid resistance by FT-IR, SEM and XRD. The effect of three key parameters (temperature, humidity and gas velocity) on CH3I adsorption was carefully investigated by orthogonal experiment design. The experimental results showed that AgY had better iodine removal performance at a high temperature, low humidity, and low flow rate. This work provides technical reference for further engineering applications of 16.6%AgY in spent fuel reprocessing plants.KEYWORDS: Zeolitespent fuelradioactive iodineadsorption AcknowledgementThis research was supported by the State Administration of Science, Technology and Industry for National Defence (KY20007) and the National Natural Science Foundation of China (U1967215).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the the National Natural Science Foundation of China [U1967215]; the State Administration of Science, Technology and Industry for National Defense [KY20007].","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"3 3","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00223131.2023.2276397","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTTo systematically study the methyl iodide (CH3I) adsorption performance and adsorption mechanism of Ag ion exchange NaY zeolite (AgY), AgY adsorbents with different Ag content were selected. 16.6% AgY was capable of storing 150 mg/g and 275 mg/g of CH3I when the penetrated CH3I reached 1‰ and 100% inlet concentration. TEM and EDS results presented a high relationship between Ag dispersion and CH3I adsorption capability. The formation of a stable AgI complex rationalized the CH3I adsorption mechanism on AgY. Compared to AgX, AgY was verified to possess a strong acid resistance by FT-IR, SEM and XRD. The effect of three key parameters (temperature, humidity and gas velocity) on CH3I adsorption was carefully investigated by orthogonal experiment design. The experimental results showed that AgY had better iodine removal performance at a high temperature, low humidity, and low flow rate. This work provides technical reference for further engineering applications of 16.6%AgY in spent fuel reprocessing plants.KEYWORDS: Zeolitespent fuelradioactive iodineadsorption AcknowledgementThis research was supported by the State Administration of Science, Technology and Industry for National Defence (KY20007) and the National Natural Science Foundation of China (U1967215).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the the National Natural Science Foundation of China [U1967215]; the State Administration of Science, Technology and Industry for National Defense [KY20007].
期刊介绍:
The Journal of Nuclear Science and Technology (JNST) publishes internationally peer-reviewed papers that contribute to the exchange of research, ideas and developments in the field of nuclear science and technology, to contribute peaceful and sustainable development of the World.
JNST ’s broad scope covers a wide range of topics within its subject category, including but are not limited to:
General Issues related to Nuclear Power Utilization: Philosophy and Ethics, Justice and Policy, International Relation, Economical and Sociological Aspects, Environmental Aspects, Education, Documentation and Database, Nuclear Non-Proliferation, Safeguard
Radiation, Accelerator and Beam Technologies: Nuclear Physics, Nuclear Reaction for Engineering, Nuclear Data Measurement and Evaluation, Integral Verification/Validation and Benchmark on Nuclear Data, Radiation Behaviors and Shielding, Radiation Physics, Radiation Detection and Measurement, Accelerator and Beam Technology, Synchrotron Radiation, Medical Reactor and Accelerator, Neutron Source, Neutron Technology
Nuclear Reactor Physics: Reactor Physics Experiments, Reactor Neutronics Design and Evaluation, Reactor Analysis, Neutron Transport Calculation, Reactor Dynamics Experiment, Nuclear Criticality Safety, Fuel Burnup and Nuclear Transmutation,
Reactor Instrumentation and Control, Human-Machine System: Reactor Instrumentation and Control System, Human Factor, Control Room and Operator Interface Design, Remote Control, Robotics, Image Processing
Thermal Hydraulics: Thermal Hydraulic Experiment and Analysis, Thermal Hydraulic Design, Thermal Hydraulics of Single/Two/Multi Phase Flow, Interactive Phenomena with Fluid, Measurement Technology...etc.