Decay Rate of $$\varvec{\exp (A^{-1}t)A^{-1}}$$ on a Hilbert Space and the Crank–Nicolson Scheme with Smooth Initial Data

IF 0.8 3区 数学 Q2 MATHEMATICS
Masashi Wakaiki
{"title":"Decay Rate of $$\\varvec{\\exp (A^{-1}t)A^{-1}}$$ on a Hilbert Space and the Crank–Nicolson Scheme with Smooth Initial Data","authors":"Masashi Wakaiki","doi":"10.1007/s00020-023-02748-1","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the decay rate of $$e^{A^{-1}t}A^{-1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>t</mml:mi> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>A</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> for the generator A of an exponentially stable $$C_0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> -semigroup on a Hilbert space. To estimate the decay rate of $$e^{A^{-1}t}A^{-1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>t</mml:mi> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>A</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , we apply a bounded functional calculus. Using this estimate and Lyapunov equations, we also study the quantified asymptotic behavior of the Crank-Nicolson scheme with smooth initial data. A similar argument is applied to a polynomially stable $$C_0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> -semigroup whose generator is normal.","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"26 12","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00020-023-02748-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper is concerned with the decay rate of $$e^{A^{-1}t}A^{-1}$$ e A - 1 t A - 1 for the generator A of an exponentially stable $$C_0$$ C 0 -semigroup on a Hilbert space. To estimate the decay rate of $$e^{A^{-1}t}A^{-1}$$ e A - 1 t A - 1 , we apply a bounded functional calculus. Using this estimate and Lyapunov equations, we also study the quantified asymptotic behavior of the Crank-Nicolson scheme with smooth initial data. A similar argument is applied to a polynomially stable $$C_0$$ C 0 -semigroup whose generator is normal.
Hilbert空间上$$\varvec{\exp (A^{-1}t)A^{-1}}$$的衰减率及初始数据光滑的Crank-Nicolson格式
研究Hilbert空间上指数稳定的$$C_0$$ c0 -半群的生成子A的衰减率($$e^{A^{-1}t}A^{-1}$$ e A - 1)和(A - 1)。为了估计$$e^{A^{-1}t}A^{-1}$$ e A - 1 t A - 1的衰减率,我们应用了有界泛函演算。利用这个估计和Lyapunov方程,我们还研究了具有光滑初始数据的Crank-Nicolson格式的量化渐近行为。一个类似的论证被应用于多项式稳定的$$C_0$$ C 0 -半群,它的生成器是正常的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信