Yakun Zhang, Andrea Vacca, Guofang Gong, Huayong Yang
{"title":"Quantitative Fault Diagnostics of Hydraulic Cylinder Using Particle Filter","authors":"Yakun Zhang, Andrea Vacca, Guofang Gong, Huayong Yang","doi":"10.3390/machines11111019","DOIUrl":null,"url":null,"abstract":"Condition-based hydraulic cylinder maintenance necessitates quantitative fault diagnostics. However, existing methods are characterized by either qualitative or limited quantitative capabilities. In this paper, a quantitative fault diagnostic method using a particle filter for hydraulic cylinders is proposed. The problem of quantitative fault diagnostics is formally formulated in a stochastic framework to assess the health/fault state, and an architecture based on joint state-parameter estimation is proposed. Through the establishment and analysis of a nonlinear dynamic model of the hydraulic cylinder, the impact of time-varying parameters on the state variables is revealed. Three fault modes of the cylinder, including friction, internal leakage, and external leakage, are theoretically identified. The proposed method allows for a simultaneous quantitative diagnosis of these three fault modes. The performance of the proposed method is evaluated using meticulously designed experiments. The results demonstrate that the mean absolute percentage errors in the parameter estimations are below 9% (accuracy exceeding 91%), thus validating its feasibility and effectiveness.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"13 7","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines11111019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Condition-based hydraulic cylinder maintenance necessitates quantitative fault diagnostics. However, existing methods are characterized by either qualitative or limited quantitative capabilities. In this paper, a quantitative fault diagnostic method using a particle filter for hydraulic cylinders is proposed. The problem of quantitative fault diagnostics is formally formulated in a stochastic framework to assess the health/fault state, and an architecture based on joint state-parameter estimation is proposed. Through the establishment and analysis of a nonlinear dynamic model of the hydraulic cylinder, the impact of time-varying parameters on the state variables is revealed. Three fault modes of the cylinder, including friction, internal leakage, and external leakage, are theoretically identified. The proposed method allows for a simultaneous quantitative diagnosis of these three fault modes. The performance of the proposed method is evaluated using meticulously designed experiments. The results demonstrate that the mean absolute percentage errors in the parameter estimations are below 9% (accuracy exceeding 91%), thus validating its feasibility and effectiveness.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.