Symmetric finite representability of $$\ell ^p$$-spaces in rearrangement invariant spaces on [0, 1]

Sergey V. Astashkin, Guillermo P. Curbera
{"title":"Symmetric finite representability of $$\\ell ^p$$-spaces in rearrangement invariant spaces on [0, 1]","authors":"Sergey V. Astashkin, Guillermo P. Curbera","doi":"10.1007/s13163-023-00464-3","DOIUrl":null,"url":null,"abstract":"For a separable rearrangement invariant space X on [0, 1] of fundamental type we identify the set of all $$p\\in [1,\\infty ]$$ such that $$\\ell ^p$$ is finitely represented in X in such a way that the unit basis vectors of $$\\ell ^p$$ ( $$c_0$$ if $$p=\\infty $$ ) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on $$(0,\\infty )$$ .","PeriodicalId":129004,"journal":{"name":"Revista Matemática Complutense","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Complutense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13163-023-00464-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a separable rearrangement invariant space X on [0, 1] of fundamental type we identify the set of all $$p\in [1,\infty ]$$ such that $$\ell ^p$$ is finitely represented in X in such a way that the unit basis vectors of $$\ell ^p$$ ( $$c_0$$ if $$p=\infty $$ ) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on $$(0,\infty )$$ .
[0,1]上重排不变空间中$$\ell ^p$$ -空间的对称有限可表征性
对于基本类型[0,1]上的可分离重排不变空间X,我们确定了所有$$p\in [1,\infty ]$$的集合,使得$$\ell ^p$$在X中有限地表示为$$\ell ^p$$ ($$c_0$$如果$$p=\infty $$)的单位基向量对应于成对不相交且相等的函数。这可以看作是第一名作者关于$$(0,\infty )$$上可分离重排不变空间的论文的后续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信