Blumea balsamifera Leaf Extract Maintain Testosterone Levels in Hypercholesterolemic Rats Through Antioxidant Mechanism and Upregulation of StAR Gene Expression
I Gede Widhiantara, Putu Angga Wiradana, Anak Agung Ayu Putri Permatasari, Ni Kadek Yunita Sari, I Wayan Rosiana, Ni Putu Widya Astuti, Luh Putu Widiastini, I Made Jawi, I Wayan Putu Sutirta Yasa
{"title":"Blumea balsamifera Leaf Extract Maintain Testosterone Levels in Hypercholesterolemic Rats Through Antioxidant Mechanism and Upregulation of StAR Gene Expression","authors":"I Gede Widhiantara, Putu Angga Wiradana, Anak Agung Ayu Putri Permatasari, Ni Kadek Yunita Sari, I Wayan Rosiana, Ni Putu Widya Astuti, Luh Putu Widiastini, I Made Jawi, I Wayan Putu Sutirta Yasa","doi":"10.13005/bpj/2724","DOIUrl":null,"url":null,"abstract":"High cholesterol levels can increase lipid peroxidation in tissues that are potentially toxic to reproductive organ cells, especially the Leydig cells that produce the testosterone hormone. Blumea balsamifera leaf extract (BBLE) has the main content in the form of flavonoid compounds with antihypercholesterolemic activity. This study aimed to determine the effect of BBLE administration on MDA levels, StAR mRNA expression, Leydig cell counts, and testosterone levels in hypercholesterolemic rats. A posttest-only control group design was utilized in this research. For 50 days, 36 male Wistar rats had been separated into two groups: 1) the control group (HCD + 1 ml/day sterile aquadest) and 2) the BBLE group (HCD + 4 mg/bb rats per day). After treatment, MDA testicular tissue levels, StAR mRNA expression, Leydig cell count, and testosterone levels were measured in both groups. The data collected were statistically examined using the Independent T-test and path analysis. The results indicated that the MDA level was lower in the BBLE group, though StAR gene expression, Leydig cell count, and testosterone levels were significantly greater (p0.05). StAR mRNA expression had a significant direct effect on testosterone levels. Administration of BBLE had been shown to improve testosterone hormone secretion in hypercholesterolemic rats by preventing oxidative stress in testicular tissue with the signs of lower MDA levels, up-regulation of the StAR mRNA, and Leydig cell regeneration.","PeriodicalId":9054,"journal":{"name":"Biomedical and Pharmacology Journal","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Pharmacology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/bpj/2724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
High cholesterol levels can increase lipid peroxidation in tissues that are potentially toxic to reproductive organ cells, especially the Leydig cells that produce the testosterone hormone. Blumea balsamifera leaf extract (BBLE) has the main content in the form of flavonoid compounds with antihypercholesterolemic activity. This study aimed to determine the effect of BBLE administration on MDA levels, StAR mRNA expression, Leydig cell counts, and testosterone levels in hypercholesterolemic rats. A posttest-only control group design was utilized in this research. For 50 days, 36 male Wistar rats had been separated into two groups: 1) the control group (HCD + 1 ml/day sterile aquadest) and 2) the BBLE group (HCD + 4 mg/bb rats per day). After treatment, MDA testicular tissue levels, StAR mRNA expression, Leydig cell count, and testosterone levels were measured in both groups. The data collected were statistically examined using the Independent T-test and path analysis. The results indicated that the MDA level was lower in the BBLE group, though StAR gene expression, Leydig cell count, and testosterone levels were significantly greater (p0.05). StAR mRNA expression had a significant direct effect on testosterone levels. Administration of BBLE had been shown to improve testosterone hormone secretion in hypercholesterolemic rats by preventing oxidative stress in testicular tissue with the signs of lower MDA levels, up-regulation of the StAR mRNA, and Leydig cell regeneration.
期刊介绍:
Biomedical and Pharmacology Journal (BPJ) is an International Peer Reviewed Research Journal in English language whose frequency is quarterly. The journal seeks to promote research, exchange of scientific information, consideration of regulatory mechanisms that affect drug development and utilization, and medical education. BPJ take much care in making your article published without much delay with your kind cooperation and support. Research papers, review articles, short communications, news are welcomed provided they demonstrate new findings of relevance to the field as a whole. All articles will be peer-reviewed and will find a place in Biomedical and Pharmacology Journal based on the merit and innovativeness of the research work. BPJ hopes that Researchers, Research scholars, Academician, Industrialists etc. would make use of this journal for the development of science and technology. Topics of interest include, but are not limited to: Biochemistry Genetics Microbiology and virology Molecular, cellular and cancer biology Neurosciences Pharmacology Drug Discovery Cardiovascular Pharmacology Neuropharmacology Molecular & Cellular Mechanisms Immunology & Inflammation Pharmacy.