Implementation of Self-Attention-based 2D CNN Models for Enhancing Remaining Useful Life Predictions Using Multivariate Time Series Data

Min-Seok Baek, Jae-Pil Ban
{"title":"Implementation of Self-Attention-based 2D CNN Models for Enhancing Remaining Useful Life Predictions Using Multivariate Time Series Data","authors":"Min-Seok Baek, Jae-Pil Ban","doi":"10.33162/jar.2023.8.23.3.238","DOIUrl":null,"url":null,"abstract":"Purpose: This research aims to introduce a novel a methodology for predicting the Remaining Useful Life (RUL) using multivariate time series data.BRMethods: The proposed RUL prediction methodology comprises of the following steps: 1) Reorganizing the multivariate time series data to enhance the correlation between different time series datasets; 2) Streamlining various time series data into a single pixel utilizing 2D convolutional layers; 3) Emphasizing the substantial correlation among different time series using a self-attention layer; 4) Estimating the RUL with Bi-LSTM and fully connected layers.BRResults: In comparison with existing deep learning models utilizing the identical test datasets, the proposed model exhibits greater performance in RUL prediction. A detailed analysis reveals the model’s merits in terms of data reorganization alongside the application of 2D CNN and multi-head self attention layers in the RUL prediction.BRConclusion: The proposed model provides more accurate RUL estimation results relative to pre-existing models using multivariate datasets obtained from multiple sensors, showing promising potential for its use in real-world applications.","PeriodicalId":499683,"journal":{"name":"Sinloeseong eung'yong yeon'gu","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sinloeseong eung'yong yeon'gu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33162/jar.2023.8.23.3.238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This research aims to introduce a novel a methodology for predicting the Remaining Useful Life (RUL) using multivariate time series data.BRMethods: The proposed RUL prediction methodology comprises of the following steps: 1) Reorganizing the multivariate time series data to enhance the correlation between different time series datasets; 2) Streamlining various time series data into a single pixel utilizing 2D convolutional layers; 3) Emphasizing the substantial correlation among different time series using a self-attention layer; 4) Estimating the RUL with Bi-LSTM and fully connected layers.BRResults: In comparison with existing deep learning models utilizing the identical test datasets, the proposed model exhibits greater performance in RUL prediction. A detailed analysis reveals the model’s merits in terms of data reorganization alongside the application of 2D CNN and multi-head self attention layers in the RUL prediction.BRConclusion: The proposed model provides more accurate RUL estimation results relative to pre-existing models using multivariate datasets obtained from multiple sensors, showing promising potential for its use in real-world applications.
使用多元时间序列数据增强剩余使用寿命预测的基于自注意的2D CNN模型的实现
目的:本研究旨在介绍一种利用多元时间序列数据预测剩余使用寿命的新方法。方法:本文提出的RUL预测方法包括以下步骤:1)对多变量时间序列数据进行重组,增强不同时间序列数据集之间的相关性;2)利用二维卷积层将各种时间序列数据精简为单个像素;3)利用自注意层强调不同时间序列之间的实质性相关性;4)利用Bi-LSTM和全连通层估计RUL。结果:与使用相同测试数据集的现有深度学习模型相比,所提出的模型在RUL预测方面表现出更高的性能。通过详细的分析,揭示了该模型在数据重组以及二维CNN和多头自注意层在RUL预测中的应用方面的优点。结论:与使用从多个传感器获得的多变量数据集的现有模型相比,所提出的模型提供了更准确的RUL估计结果,显示出其在实际应用中的良好潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信