Sentiment Analysis for Online Learning using The Lexicon-Based Method and The Support Vector Machine Algorithm

M. Khairul Anam, Triyani Arita Fitri, Agustin Agustin, Lusiana Lusiana, Muhammad Bambang Firdaus, Agus Tri Nurhuda
{"title":"Sentiment Analysis for Online Learning using The Lexicon-Based Method and The Support Vector Machine Algorithm","authors":"M. Khairul Anam, Triyani Arita Fitri, Agustin Agustin, Lusiana Lusiana, Muhammad Bambang Firdaus, Agus Tri Nurhuda","doi":"10.33096/ilkom.v15i2.1590.290-302","DOIUrl":null,"url":null,"abstract":"The pros and cons regarding online learning has been a hot topic in society, both on social media and in the real world. Indonesian netizens still post opinions about online learning on social media such as Twitter. This study aims to analyze public comments to determine whether the trend of the comments is positive, negative, or neutral. The classification of netizen opinions is called sentiment analysis. This study applies 2 ways of carrying out sentiment analysis. The first stage employs the SVM algorithm with data labeling automatically obtained from the Emprit Academy drone portal while the second stage is still using the SVM algorithm but the data labeling with lexicon-based method. The results of this study are comparisons of labels obtained automatically from the Emprit Academy drone portal and labeling using lexicon based. The SVM algorithm obtains an accuracy of 90%, while the use of lexicon-based increases the accuracy value by 5% to 95%. It can be concluded that labeling data using a lexicon-based method can improve the accuracy of the SVM algorithm.","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v15i2.1590.290-302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pros and cons regarding online learning has been a hot topic in society, both on social media and in the real world. Indonesian netizens still post opinions about online learning on social media such as Twitter. This study aims to analyze public comments to determine whether the trend of the comments is positive, negative, or neutral. The classification of netizen opinions is called sentiment analysis. This study applies 2 ways of carrying out sentiment analysis. The first stage employs the SVM algorithm with data labeling automatically obtained from the Emprit Academy drone portal while the second stage is still using the SVM algorithm but the data labeling with lexicon-based method. The results of this study are comparisons of labels obtained automatically from the Emprit Academy drone portal and labeling using lexicon based. The SVM algorithm obtains an accuracy of 90%, while the use of lexicon-based increases the accuracy value by 5% to 95%. It can be concluded that labeling data using a lexicon-based method can improve the accuracy of the SVM algorithm.
基于词典和支持向量机算法的在线学习情感分析
在线学习的利弊一直是社会上的一个热门话题,无论是在社交媒体上还是在现实世界中。印尼网民仍在Twitter等社交媒体上发表对在线学习的看法。本研究旨在分析公众评论,以确定评论的趋势是积极的,消极的,还是中立的。网民意见的分类被称为情感分析。本研究采用两种方式进行情绪分析。第一阶段采用SVM算法,自动标注从Emprit Academy无人机门户网站获取的数据;第二阶段仍采用SVM算法,但采用基于词典的方法标注数据。本研究的结果是比较了从Emprit Academy无人机门户网站自动获得的标签和使用基于词典的标签。SVM算法的准确率为90%,而使用基于词典的算法,准确率提高了5% ~ 95%。由此可见,使用基于词典的方法对数据进行标注可以提高SVM算法的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信