Stephen P.H. Alexander, Patrick Doherty, Christopher J. Fowler, Jürg Gertsch, Mario Van der Stelt
{"title":"Endocannabinoid turnover in GtoPdb v.2023.1","authors":"Stephen P.H. Alexander, Patrick Doherty, Christopher J. Fowler, Jürg Gertsch, Mario Van der Stelt","doi":"10.2218/gtopdb/f943/2023.1","DOIUrl":null,"url":null,"abstract":"The principle endocannabinoids are 2-acylglycerol esters, such as 2-arachidonoylglycerol (2-AG), and N-acylethanolamines, such as anandamide (N-arachidonoylethanolamine, AEA). The glycerol esters and ethanolamides are synthesised and hydrolysed by parallel, independent pathways. Mechanisms for release and re-uptake of endocannabinoids are unclear, although potent and selective inhibitors of facilitated diffusion of endocannabinoids across cell membranes have been developed [29]. FABP5 (Q01469) has been suggested to act as a canonical intracellular endocannabinoid transporter in vivo [17]. For the generation of 2-arachidonoylglycerol, the key enzyme involved is diacylglycerol lipase (DAGL), whilst several routes for anandamide synthesis have been described, the best characterized of which involves N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD, [75]). A transacylation enzyme which forms N-acylphosphatidylethanolamines has been identified as a cytosolic enzyme, PLA2G4E (Q3MJ16) [66]. In vitro experiments indicate that the endocannabinoids are also substrates for oxidative metabolism via cyclooxygenase, lipoxygenase and cytochrome P450 enzyme activities [5, 24, 77].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUPHAR/BPS Guide to Pharmacology CITE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2218/gtopdb/f943/2023.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The principle endocannabinoids are 2-acylglycerol esters, such as 2-arachidonoylglycerol (2-AG), and N-acylethanolamines, such as anandamide (N-arachidonoylethanolamine, AEA). The glycerol esters and ethanolamides are synthesised and hydrolysed by parallel, independent pathways. Mechanisms for release and re-uptake of endocannabinoids are unclear, although potent and selective inhibitors of facilitated diffusion of endocannabinoids across cell membranes have been developed [29]. FABP5 (Q01469) has been suggested to act as a canonical intracellular endocannabinoid transporter in vivo [17]. For the generation of 2-arachidonoylglycerol, the key enzyme involved is diacylglycerol lipase (DAGL), whilst several routes for anandamide synthesis have been described, the best characterized of which involves N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD, [75]). A transacylation enzyme which forms N-acylphosphatidylethanolamines has been identified as a cytosolic enzyme, PLA2G4E (Q3MJ16) [66]. In vitro experiments indicate that the endocannabinoids are also substrates for oxidative metabolism via cyclooxygenase, lipoxygenase and cytochrome P450 enzyme activities [5, 24, 77].