{"title":"Reservoir Geomechanics: A Data-driven Approach","authors":"Izuchukwu Josephmartin Korie, Chudi-Ajabor Ogochukwu, Onwuagba Kenechi Innocent","doi":"10.9734/jenrr/2023/v15i2306","DOIUrl":null,"url":null,"abstract":"Reservoir geomechanics is a crucial aspect of optimising and developing oil and gas activities, especially in maximising production. Recent technological advancements have revolutionised reservoir geomechanics studies, including integrating data-driven approaches. This review examines and integrates machine learning, data science, and data twin in reservoir studies. The primary aim is to identify the benefits, limitations, significant advancements, potential challenges, opportunities, and research gaps of data-driven approaches to reservoir geomechanics. Additionally, this study aims to create opportunities for further research to address these challenges. The review identifies cost-effectiveness, improved reservoir characterisation, and reduced operational risks as the benefits of integrating data-driven approaches in reservoir geomechanics. However, the review also highlights the significant challenges of data-driven approaches, such as insufficient datasets, limited interpretability, and limited transferability of models. By shedding light on these issues, this review provides a foundation for future research toward finding solutions to these challenges.","PeriodicalId":499811,"journal":{"name":"Journal of Energy Research and Reviews","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Research and Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/jenrr/2023/v15i2306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoir geomechanics is a crucial aspect of optimising and developing oil and gas activities, especially in maximising production. Recent technological advancements have revolutionised reservoir geomechanics studies, including integrating data-driven approaches. This review examines and integrates machine learning, data science, and data twin in reservoir studies. The primary aim is to identify the benefits, limitations, significant advancements, potential challenges, opportunities, and research gaps of data-driven approaches to reservoir geomechanics. Additionally, this study aims to create opportunities for further research to address these challenges. The review identifies cost-effectiveness, improved reservoir characterisation, and reduced operational risks as the benefits of integrating data-driven approaches in reservoir geomechanics. However, the review also highlights the significant challenges of data-driven approaches, such as insufficient datasets, limited interpretability, and limited transferability of models. By shedding light on these issues, this review provides a foundation for future research toward finding solutions to these challenges.