Modeling, heat dissipation design, and force tracking control for temperature-dependent hysteresis of magnetorheological damper

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Zhu, Fufeng Yang, Xiao-ting Rui
{"title":"Modeling, heat dissipation design, and force tracking control for temperature-dependent hysteresis of magnetorheological damper","authors":"Wei Zhu, Fufeng Yang, Xiao-ting Rui","doi":"10.1177/1045389x231194376","DOIUrl":null,"url":null,"abstract":"The temperature-dependence (T-dependence) characteristics of magnetorheological fluids (MRFs) cause the damping force of magnetorheological dampers (MRDs) to change with temperature. The rapid temperature rise can lead to performance degradation or even failure of MRFs, reduced damping force of MRDs, and decline in control performance. In this paper, numerical simulations and predictions of the temperature rise characteristics of the MRD are performed and heat sinks are designed and optimized. The experimental results verify the efficiency of the simulations and predictions, and the heat sinks can significantly reduce the rate of temperature increase and improve the ability of the damper to operate for long hours. In order to accurately compensate for T-dependence characteristics of the MRD, a T-dependence hysteresis model and a model-based feedforward force tracking control method with disturbance observation of the MRD are proposed and validated by experiments. The experimental results indicate that the proposed T-dependence model has better prediction accuracy than the general hysteresis model, and the feedforward control method achieves good force tracking performance even without expensive force sensors.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"49 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1045389x231194376","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The temperature-dependence (T-dependence) characteristics of magnetorheological fluids (MRFs) cause the damping force of magnetorheological dampers (MRDs) to change with temperature. The rapid temperature rise can lead to performance degradation or even failure of MRFs, reduced damping force of MRDs, and decline in control performance. In this paper, numerical simulations and predictions of the temperature rise characteristics of the MRD are performed and heat sinks are designed and optimized. The experimental results verify the efficiency of the simulations and predictions, and the heat sinks can significantly reduce the rate of temperature increase and improve the ability of the damper to operate for long hours. In order to accurately compensate for T-dependence characteristics of the MRD, a T-dependence hysteresis model and a model-based feedforward force tracking control method with disturbance observation of the MRD are proposed and validated by experiments. The experimental results indicate that the proposed T-dependence model has better prediction accuracy than the general hysteresis model, and the feedforward control method achieves good force tracking performance even without expensive force sensors.
磁流变阻尼器温度滞后的建模、散热设计及力跟踪控制
磁流变液的温度依赖性(t依赖性)使得磁流变阻尼器的阻尼力随温度变化。温度的快速升高会导致mrf的性能下降甚至失效,mrd的阻尼力降低,控制性能下降。本文对MRD的温升特性进行了数值模拟和预测,并对散热器进行了设计和优化。实验结果验证了模拟和预测的有效性,散热器可以显著降低温度上升速率,提高阻尼器长时间运行的能力。为了准确补偿磁流变仪的t相关特性,提出了基于t相关滞后模型和基于模型的磁流变仪扰动观测前馈力跟踪控制方法,并进行了实验验证。实验结果表明,所提出的t相关模型比一般的滞后模型具有更好的预测精度,前馈控制方法即使不需要昂贵的力传感器也能获得良好的力跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信