Statistical bayesian algorithm for processing thermographic images of the cow udder for diagnosing mastitis

I. I. Hirutsky, A. G. Senkov, Y. A. Rakevich
{"title":"Statistical bayesian algorithm for processing thermographic images of the cow udder for diagnosing mastitis","authors":"I. I. Hirutsky, A. G. Senkov, Y. A. Rakevich","doi":"10.21122/2309-4923-2023-1-42-46","DOIUrl":null,"url":null,"abstract":"The article presents results of our experiments carried out to study the invariance of the digital description of the imageThere in the paper is formulated a mathematical problem of multi-hypothetical detection of subclinical and clinical mastitis in dairy cows by the maximum values of udder temperature measured by digital processing of the udder thermal images. The optimal temperature threshold values corresponding to the Bayesian criterion of the minimum average risk in the above multi-hypothesis detection problem are determined by numerical modelling.","PeriodicalId":30907,"journal":{"name":"Sistemnyj Analiz i Prikladnaa Informatika","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sistemnyj Analiz i Prikladnaa Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2309-4923-2023-1-42-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents results of our experiments carried out to study the invariance of the digital description of the imageThere in the paper is formulated a mathematical problem of multi-hypothetical detection of subclinical and clinical mastitis in dairy cows by the maximum values of udder temperature measured by digital processing of the udder thermal images. The optimal temperature threshold values corresponding to the Bayesian criterion of the minimum average risk in the above multi-hypothesis detection problem are determined by numerical modelling.
统计贝叶斯算法处理奶牛乳房热成像图像诊断乳腺炎
本文介绍了我们为研究图像数字描述的不变性而进行的实验结果。本文提出了一个通过对奶牛乳房热图像进行数字处理所测得的乳房温度最大值来检测奶牛亚临床和临床乳房炎的多假设数学问题。通过数值模拟确定了上述多假设检测问题中平均风险最小贝叶斯准则所对应的最优温度阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
29
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信