{"title":"Measure-theoretic sequence entropy pairs and mean sensitivity","authors":"FELIPE GARCÍA-RAMOS, VÍCTOR MUÑOZ-LÓPEZ","doi":"10.1017/etds.2023.65","DOIUrl":null,"url":null,"abstract":"Abstract We characterize measure-theoretic sequence entropy pairs of continuous actions of abelian groups using mean sensitivity. This addresses an open question of Li and Yu [On mean sensitive tuples. J. Differential Equations 297 (2021), 175–200]. As a consequence of our results, we provide a simpler characterization of Kerr and Li’s independence sequence entropy pairs ( $\\mu $ -IN-pairs) when the measure is ergodic and the group is abelian.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.65","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We characterize measure-theoretic sequence entropy pairs of continuous actions of abelian groups using mean sensitivity. This addresses an open question of Li and Yu [On mean sensitive tuples. J. Differential Equations 297 (2021), 175–200]. As a consequence of our results, we provide a simpler characterization of Kerr and Li’s independence sequence entropy pairs ( $\mu $ -IN-pairs) when the measure is ergodic and the group is abelian.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.