{"title":"Characterizing Tseitin-Formulas with Short Regular Resolution Refutations","authors":"Alexis de Colnet, Stefan Mengel","doi":"10.1613/jair.1.13521","DOIUrl":null,"url":null,"abstract":"Tseitin-formulas are systems of parity constraints whose structure is described by a graph. These formulas have been studied extensively in proof complexity as hard instances in many proof systems. In this paper, we prove that a class of unsatisfiable Tseitin-formulas of bounded degree has regular resolution refutations of polynomial length if and only if the treewidth of all underlying graphs G for that class is in O(log |V (G)|). It follows that unsatisfiable Tseitin-formulas with polynomial length of regular resolution refutations are completely determined by the treewidth of the underlying graphs when these graphs have bounded degree. To prove this, we show that any regular resolution refutation of an unsatisfiable Tseitin-formula with graph G of bounded degree has length 2Ω(tw(G))/|V (G)|, thus essentially matching the known 2O(tw(G))poly(|V (G)|) upper bound. Our proof first connects the length of regular resolution refutations of unsatisfiable Tseitin-formulas to the size of representations of satisfiable Tseitin-formulas in decomposable negation normal form (DNNF). Then we prove that for every graph G of bounded degree, every DNNF-representation of every satisfiable Tseitin-formula with graph G must have size 2Ω(tw(G)) which yields our lower bound for regular resolution.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"22 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1613/jair.1.13521","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Tseitin-formulas are systems of parity constraints whose structure is described by a graph. These formulas have been studied extensively in proof complexity as hard instances in many proof systems. In this paper, we prove that a class of unsatisfiable Tseitin-formulas of bounded degree has regular resolution refutations of polynomial length if and only if the treewidth of all underlying graphs G for that class is in O(log |V (G)|). It follows that unsatisfiable Tseitin-formulas with polynomial length of regular resolution refutations are completely determined by the treewidth of the underlying graphs when these graphs have bounded degree. To prove this, we show that any regular resolution refutation of an unsatisfiable Tseitin-formula with graph G of bounded degree has length 2Ω(tw(G))/|V (G)|, thus essentially matching the known 2O(tw(G))poly(|V (G)|) upper bound. Our proof first connects the length of regular resolution refutations of unsatisfiable Tseitin-formulas to the size of representations of satisfiable Tseitin-formulas in decomposable negation normal form (DNNF). Then we prove that for every graph G of bounded degree, every DNNF-representation of every satisfiable Tseitin-formula with graph G must have size 2Ω(tw(G)) which yields our lower bound for regular resolution.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.