On the Complexity of Techniques That Make Transition Systems Implementable by Boolean Nets

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Raymond Devillers, Ronny Tredup
{"title":"On the Complexity of Techniques That Make Transition Systems Implementable by Boolean Nets","authors":"Raymond Devillers, Ronny Tredup","doi":"10.3233/fi-222161","DOIUrl":null,"url":null,"abstract":"Let us consider some class of (Petri) nets. The corresponding Synthesis problem consists in deciding whether a given labeled transition system (TS) A can be implemented by a net N of that class. In case of a negative decision, it may be possible to convert A into an implementable TS B by applying various modification techniques, like relabeling edges that previously had the same label, suppressing edges/states/events, etc. It may however be useful to limit the number of such modifications to stay close to the original problem, or optimize the technique. In this paper, we show that most of the corresponding problems are NP-complete if the considered class corresponds to so-called flip-flop nets or some flip-flop net derivatives.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":"1 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/fi-222161","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Let us consider some class of (Petri) nets. The corresponding Synthesis problem consists in deciding whether a given labeled transition system (TS) A can be implemented by a net N of that class. In case of a negative decision, it may be possible to convert A into an implementable TS B by applying various modification techniques, like relabeling edges that previously had the same label, suppressing edges/states/events, etc. It may however be useful to limit the number of such modifications to stay close to the original problem, or optimize the technique. In this paper, we show that most of the corresponding problems are NP-complete if the considered class corresponds to so-called flip-flop nets or some flip-flop net derivatives.
布尔网络实现转换系统技术的复杂性
让我们考虑一类(Petri)网。相应的综合问题包括决定给定的标记转换系统(TS) a是否可以由该类的净N实现。在负面决定的情况下,可以通过应用各种修改技术将a转换为可实现的TS B,例如重新标记以前具有相同标签的边,抑制边/状态/事件等。然而,限制此类修改的数量以接近原始问题或优化技术可能是有用的。在本文中,我们证明了如果所考虑的类对应于所谓的触发器网络或某些触发器网络导数,则大多数相应的问题是np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamenta Informaticae
Fundamenta Informaticae 工程技术-计算机:软件工程
CiteScore
2.00
自引率
0.00%
发文量
61
审稿时长
9.8 months
期刊介绍: Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing: solutions by mathematical methods of problems emerging in computer science solutions of mathematical problems inspired by computer science. Topics of interest include (but are not restricted to): theory of computing, complexity theory, algorithms and data structures, computational aspects of combinatorics and graph theory, programming language theory, theoretical aspects of programming languages, computer-aided verification, computer science logic, database theory, logic programming, automated deduction, formal languages and automata theory, concurrency and distributed computing, cryptography and security, theoretical issues in artificial intelligence, machine learning, pattern recognition, algorithmic game theory, bioinformatics and computational biology, quantum computing, probabilistic methods, algebraic and categorical methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信