Diffusion Convolution Neural Network-based Multiview Gesture Recognition for Athletes in Dynamic Scenes

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Qingyun Wang, Hua Li
{"title":"Diffusion Convolution Neural Network-based Multiview Gesture Recognition for Athletes in Dynamic Scenes","authors":"Qingyun Wang, Hua Li","doi":"10.1142/s0218126624501147","DOIUrl":null,"url":null,"abstract":"This paper focuses on deep vision sensing-assisted gesture recognition for athletes in dynamic scenes. Although many research attention had been devoted to this field in recent years, most of existing works failed to fully take characteristics of dynamic scenes into consideration. To deal with this challenge, this paper proposes a diffusion convolution neural network-based multiview gesture recognition approach in dynamic scenes. For one thing, the dynamic spatiotemporal slice position selection based on the body mask heatmap is adopted to calculate positions of horizontal and vertical slices. Thus, the dynamic selection of slice positions in two directions can be realized, and then the extraction of bi-directional spatiotemporal slice images can be completed. For another, action sequences through the 3D residual neural network are learned, and the spatiotemporal information among frames are mined through recurrent networks. Through their combination, a multi-view gesture recognition approach for athletes is constructed. In the experiments, two standard datasets UCF101 and HMDB51 are utilized to establish simulation environment. The proposed method can reach the accuracy beyond 95% on the two datasets. Compared with several typical recognition methods, the proposed method shows higher accuracy.","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"408 19","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218126624501147","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on deep vision sensing-assisted gesture recognition for athletes in dynamic scenes. Although many research attention had been devoted to this field in recent years, most of existing works failed to fully take characteristics of dynamic scenes into consideration. To deal with this challenge, this paper proposes a diffusion convolution neural network-based multiview gesture recognition approach in dynamic scenes. For one thing, the dynamic spatiotemporal slice position selection based on the body mask heatmap is adopted to calculate positions of horizontal and vertical slices. Thus, the dynamic selection of slice positions in two directions can be realized, and then the extraction of bi-directional spatiotemporal slice images can be completed. For another, action sequences through the 3D residual neural network are learned, and the spatiotemporal information among frames are mined through recurrent networks. Through their combination, a multi-view gesture recognition approach for athletes is constructed. In the experiments, two standard datasets UCF101 and HMDB51 are utilized to establish simulation environment. The proposed method can reach the accuracy beyond 95% on the two datasets. Compared with several typical recognition methods, the proposed method shows higher accuracy.
基于扩散卷积神经网络的动态场景运动员多视角手势识别
本文主要研究动态场景下运动员深度视觉感知辅助手势识别。虽然近年来这一领域的研究得到了很多关注,但现有的研究大多没有充分考虑到动态场景的特点。为了解决这一问题,本文提出了一种基于扩散卷积神经网络的动态场景多视角手势识别方法。首先,采用基于体掩模热图的动态时空切片位置选择,计算水平切片和垂直切片的位置;从而实现两个方向上切片位置的动态选择,进而完成双向时空切片图像的提取。另一方面,通过三维残差神经网络学习动作序列,并通过循环网络挖掘帧间的时空信息。通过两者的结合,构建了运动员多视角手势识别方法。实验采用UCF101和HMDB51两个标准数据集建立仿真环境。该方法在两个数据集上均能达到95%以上的准确率。通过与几种典型识别方法的比较,表明该方法具有较高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Circuits Systems and Computers
Journal of Circuits Systems and Computers 工程技术-工程:电子与电气
CiteScore
2.80
自引率
26.70%
发文量
350
审稿时长
5.4 months
期刊介绍: Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections: Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality. Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信