{"title":"Difference-of-Convex Algorithm with Extrapolation for Nonconvex, Nonsmooth Optimization Problems","authors":"Duy Nhat Phan, Hoai An Le Thi","doi":"10.1287/moor.2020.0393","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the problem of minimizing the sum of a nonconvex differentiable function and a difference of convex (DC) function, where the differentiable function is not restricted to the global Lipschitz gradient continuity assumption. This problem covers a broad range of applications in machine learning and statistics, such as compressed sensing, signal recovery, sparse dictionary learning, matrix factorization, etc. We first take inspiration from the Nesterov acceleration technique and the DC algorithm to develop a novel algorithm for the considered problem. We then study the subsequential convergence of our algorithm to a critical point. Furthermore, we justify the global convergence of the whole sequence generated by our algorithm to a critical point and establish its convergence rate under the Kurdyka–Łojasiewicz condition. Numerical experiments on the nonnegative matrix completion problem are performed to demonstrate the efficiency of our algorithm and its superiority over well-known methods.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"36 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/moor.2020.0393","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on the problem of minimizing the sum of a nonconvex differentiable function and a difference of convex (DC) function, where the differentiable function is not restricted to the global Lipschitz gradient continuity assumption. This problem covers a broad range of applications in machine learning and statistics, such as compressed sensing, signal recovery, sparse dictionary learning, matrix factorization, etc. We first take inspiration from the Nesterov acceleration technique and the DC algorithm to develop a novel algorithm for the considered problem. We then study the subsequential convergence of our algorithm to a critical point. Furthermore, we justify the global convergence of the whole sequence generated by our algorithm to a critical point and establish its convergence rate under the Kurdyka–Łojasiewicz condition. Numerical experiments on the nonnegative matrix completion problem are performed to demonstrate the efficiency of our algorithm and its superiority over well-known methods.
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.