A Modified Randomization Test for the Level of Clustering

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yong Cai
{"title":"A Modified Randomization Test for the Level of Clustering","authors":"Yong Cai","doi":"10.1080/07350015.2023.2261567","DOIUrl":null,"url":null,"abstract":"AbstractSuppose a researcher observes individuals within a county within a state. Given concerns about correlation across individuals, it is common to group observations into clusters and conduct inference treating observations across clusters as independent. However, a researcher that has chosen to cluster at the county level may be unsure of their decision, given knowledge that observations are independent across states. This paper proposes a modified randomization test as a robustness check for the chosen level of clustering in a linear regression setting. Existing tests require either the number of states or number of counties to be large. Our method is designed for settings with few states and few counties. While the method is conservative, it has competitive power in settings that may be relevant to empirical work.Keywords: Linear RegressionClustered Standard ErrorsSmall-Cluster AsymptoticsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2261567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

AbstractSuppose a researcher observes individuals within a county within a state. Given concerns about correlation across individuals, it is common to group observations into clusters and conduct inference treating observations across clusters as independent. However, a researcher that has chosen to cluster at the county level may be unsure of their decision, given knowledge that observations are independent across states. This paper proposes a modified randomization test as a robustness check for the chosen level of clustering in a linear regression setting. Existing tests require either the number of states or number of counties to be large. Our method is designed for settings with few states and few counties. While the method is conservative, it has competitive power in settings that may be relevant to empirical work.Keywords: Linear RegressionClustered Standard ErrorsSmall-Cluster AsymptoticsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
聚类水平的改进随机化检验
摘要假设一个研究者观察一个州内一个县内的个体。考虑到个体之间的相关性,通常将观察结果分组,并将观察结果视为独立进行推理。然而,考虑到各州的观察结果是独立的,选择在县一级聚集的研究人员可能不确定他们的决定。本文提出了一种改进的随机化检验,作为线性回归设置中所选择的聚类水平的鲁棒性检查。现有的测试要么要求州的数量多,要么要求县的数量多。我们的方法是为少数州和县的设置而设计的。虽然该方法是保守的,但它在可能与实证工作相关的环境中具有竞争力。关键词:线性回归聚类标准误差小聚类渐近免责声明作为对作者和研究人员的服务,我们提供此版本的已接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信