{"title":"Circuit Simulation Method for Insulated-Gate Bipolar Transistor Short-Circuit Operation with High Accuracy","authors":"Takaya Ozawa, Takao Yamamoto, Hiroto Sugiura, Yosuke Kondo","doi":"10.1541/ieejjia.21009050","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method to improve the circuit simulation accuracy of insulated-gate bipolar transistor (IGBT) power devices under a short-circuit state. To determine the IGBT junction temperature, the transient thermal resistance of an IGBT device on the order of micro seconds is estimated by transient thermal simulations. The saturation current without self-heating effects is estimated based on a short-circuit test and the transient thermal resistance. The IGBT SPICE parameter is extracted from the saturation current characteristics during the short-circuit state. The coupled electrical-thermal simulations with the SPICE model and thermal resistance model are applied to several short-circuit evaluations with different parasitic impedance and gate driving condition, and the results are consistent with the measured current and voltage waveforms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.21009050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a novel method to improve the circuit simulation accuracy of insulated-gate bipolar transistor (IGBT) power devices under a short-circuit state. To determine the IGBT junction temperature, the transient thermal resistance of an IGBT device on the order of micro seconds is estimated by transient thermal simulations. The saturation current without self-heating effects is estimated based on a short-circuit test and the transient thermal resistance. The IGBT SPICE parameter is extracted from the saturation current characteristics during the short-circuit state. The coupled electrical-thermal simulations with the SPICE model and thermal resistance model are applied to several short-circuit evaluations with different parasitic impedance and gate driving condition, and the results are consistent with the measured current and voltage waveforms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.