Kan Yang, Kan Akatsu, Kodai Okazaki, Yoshihiro Miyama
{"title":"Imbalanced Force Suppression Due to Static Eccentricity by using Triple Three-phase Winding Motor","authors":"Kan Yang, Kan Akatsu, Kodai Okazaki, Yoshihiro Miyama","doi":"10.1541/ieejjia.22008991","DOIUrl":null,"url":null,"abstract":"Permanent magnet synchronous machines (PMSMs) are widely used in a variety of applications. The static eccentricity of the rotor is a common fault in the fabrication process. These faults cause imbalanced electromagnetic force and exert unexpected vibration and acoustic noise during the design process. In the worst case, it causes bearing or motor failure. This research investigates the impact of this fault on the temporal and spatial harmonic distribution of gap flux density and electromagnetic force. Moreover, a compensation method has been proposed to suppress imbalanced force due to static eccentricity by using a triple three-phase winding motor. By controlling the three inverters independently, the winding current of each group can be controlled. Therefore, the gap flux density and electromagnetic force in each group can be brought into a desired state. Therefore, the imbalanced electromagnetic force can be restored using this system. In this paper, the effectiveness of the proposed method is verified by Finite Element Analysis (FEA) and experiment.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22008991","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Permanent magnet synchronous machines (PMSMs) are widely used in a variety of applications. The static eccentricity of the rotor is a common fault in the fabrication process. These faults cause imbalanced electromagnetic force and exert unexpected vibration and acoustic noise during the design process. In the worst case, it causes bearing or motor failure. This research investigates the impact of this fault on the temporal and spatial harmonic distribution of gap flux density and electromagnetic force. Moreover, a compensation method has been proposed to suppress imbalanced force due to static eccentricity by using a triple three-phase winding motor. By controlling the three inverters independently, the winding current of each group can be controlled. Therefore, the gap flux density and electromagnetic force in each group can be brought into a desired state. Therefore, the imbalanced electromagnetic force can be restored using this system. In this paper, the effectiveness of the proposed method is verified by Finite Element Analysis (FEA) and experiment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.