Husham I. Hussein, Ahmed Alazawi, A. Rodríguez, F. Muñoz
{"title":"Performance Evaluation of ST-Based Methods for Simulating and Analyzing Power Quality Disturbances","authors":"Husham I. Hussein, Ahmed Alazawi, A. Rodríguez, F. Muñoz","doi":"10.2478/ijssis-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract The complexity of power quality disturbances (PQDs) is a significant risk factor in the electricity sector. An accurate and fast analysis of these disturbances provides crucial information to cover all the issues related to power quality. The main objective of this study is to explore a new analytic technique, including all kinds of disturbances that can appear in electrical networks, that differs from previous technologies such as the Fourier transform. Three methods based on the Stockwell transform, namely, the discrete orthonormal Stockwell transform (DOST), discrete cosine Stockwell transform (DCST), and discrete cosine transform (DCT), were used to analyze PQDs in time–frequency representation. These methods diagnose the disturbance's signal properties, which are dependent on resolution and absolute phase information. Nine PQDs, including normal sine waves, were mathematically modeled and used to evaluate the proposed methods. All the methods can effectively simulate and analyze PQDs. Among them, DOST is the most effective in providing clear and high-resolution time–frequency representations of signals. The classification of disturbances was fulfilled based on statistical features extracted from matrices derived from Stockwell transform-based methods, such as analytic approaches (mean, variation, standard deviation, entropy, skewness, and kurtosis). Neural networks, a method utilizing intelligence classifiers, were used for pattern recognition, and the patterns of the different methods were compared. Simulation results proved that DOST needs fewer samples than other methods; its capability to deal with signals in time–frequency resolution is also more viable. The neural network classifier has a higher accuracy rate than the K-nearest neighbor and decision tree methods and approximates the support vector machine method.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijssis-2023-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The complexity of power quality disturbances (PQDs) is a significant risk factor in the electricity sector. An accurate and fast analysis of these disturbances provides crucial information to cover all the issues related to power quality. The main objective of this study is to explore a new analytic technique, including all kinds of disturbances that can appear in electrical networks, that differs from previous technologies such as the Fourier transform. Three methods based on the Stockwell transform, namely, the discrete orthonormal Stockwell transform (DOST), discrete cosine Stockwell transform (DCST), and discrete cosine transform (DCT), were used to analyze PQDs in time–frequency representation. These methods diagnose the disturbance's signal properties, which are dependent on resolution and absolute phase information. Nine PQDs, including normal sine waves, were mathematically modeled and used to evaluate the proposed methods. All the methods can effectively simulate and analyze PQDs. Among them, DOST is the most effective in providing clear and high-resolution time–frequency representations of signals. The classification of disturbances was fulfilled based on statistical features extracted from matrices derived from Stockwell transform-based methods, such as analytic approaches (mean, variation, standard deviation, entropy, skewness, and kurtosis). Neural networks, a method utilizing intelligence classifiers, were used for pattern recognition, and the patterns of the different methods were compared. Simulation results proved that DOST needs fewer samples than other methods; its capability to deal with signals in time–frequency resolution is also more viable. The neural network classifier has a higher accuracy rate than the K-nearest neighbor and decision tree methods and approximates the support vector machine method.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity