{"title":"The combinatorial formula for open gravitational descendents","authors":"Ran J. Tessler","doi":"10.2140/gt.2023.27.2497","DOIUrl":null,"url":null,"abstract":"In recent works, [20],[21], descendent integrals on the moduli space of Riemann surfaces with boundary were defined. It was conjectured in [20] that the generating function of these integrals satisfies the open KdV equations. In this paper we develop the notions of symmetric Strebel-Jenkins differentials and of Kasteleyn orientations for graphs embedded in open surfaces. In addition we write an explicit expression for the angular form of the sum of line bundles. Using these tools we prove a formula for the descendent integrals in terms of sums over weighted graphs. Based on this formula, the conjecture of [20] was proved in [5].","PeriodicalId":49200,"journal":{"name":"Geometry & Topology","volume":"69 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.2497","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18
Abstract
In recent works, [20],[21], descendent integrals on the moduli space of Riemann surfaces with boundary were defined. It was conjectured in [20] that the generating function of these integrals satisfies the open KdV equations. In this paper we develop the notions of symmetric Strebel-Jenkins differentials and of Kasteleyn orientations for graphs embedded in open surfaces. In addition we write an explicit expression for the angular form of the sum of line bundles. Using these tools we prove a formula for the descendent integrals in terms of sums over weighted graphs. Based on this formula, the conjecture of [20] was proved in [5].
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.